Building a
Skyscraper W|th

Tyler McMullen

@tbmcmullen

ok, what’s up?

Let’s build a
distributed system!

The Project

» 2

OO

O O O

O0O000O0

50+ Datacenters
Thousands of bare metal servers
up to 64 Servers per Datacenter

Ten of Thousands of Origin Servers

Still with me?

One
Possible
Solution

Strong Consistency

Eventual Consistency

Forward Progress

ABSTRACT

Minimizing coordination, or blocking communication between con-
currently executing operations, is key to maximizing scalability,
availability, and high performance in database systems. However,
uninhibited coordination-free execution can compromise applica-
tion correctness, or consistency. When is coordination necessary for
correctness? The classic use of senalizable transactions 1s sufficient
to maintain correctness but 1s not necessary for all applications,
sacrificing potential scalability. In this paper, we develop a formal
framework, invariant confluence, that determines whether an appli-
cation requires coordination for correct execution. By operating
on application-level invariants over database states (e.g., integrity
constraints), invariant confluence analysis provides a necessary and
sufficient condition for safe, coordination-free execution. When
programmers specify their application invariants, this analysis al-
lows databases to coordinate only when anomalies that might violate
invariants are possible. We analyze the invariant confluence of com-
mon invariants and operations from real-world database systems
(1.e., integrity constraints) and applications and show that many are
invariant confluent and therefore achievable without coordination.
We apply these results to a proof-of-concept coordination-avoiding
database prototype and demonstrate sizable performance gains com-
pared to serializable execution, notably a 25-fold improvement over
prior TPC-C New-Order performance on a 200 server cluster.

Coordination Avoidance in Database Systems

Peter Bailis, Alan Fekete”, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein, lon Stoica
UC Berkeley and TUniversity of Sydney

level correctness, or consistency.! In canonical banking applica-
tion examples, concurrent, coordination-free withdrawal operations
can result in undesirable and “inconsistent” outcomes like negative
account balances—application-level anomalies that the database
should prevent. To ensure correct behavior, a database system must
coordinate the execution of these operations that, if otherwise exe-
cuted concurrently, could result in inconsistent application state.
This tension between coordination and correctness 15 evidenced
by the range of database concurrency control policies. In tradi-
tional database systems, serializable isolation provides concurrent
operations (transactions) with the 1llusion of executing in some se-
rial order [15]. As long as individual transactions maintain correct
application state, serializability guarantees correctness [30]. How-
ever, cach pair of concurrent operations (at least one of which is
a write) can potentially compromise senalizability and therefore
will require coordination to execute [9,21]. By isolating users at
the level of reads and writes, serializability can be overly conser-
vative and may in turn coordinate more than 1s strictly necessary
for consistency [29, 39, 53, 58]. For example, hundreds of users
can safely and simultaneously retweet Barack Obama on Twitter
without observing a serial ordering of updates to the retweet counter.
In contrast, a range of widely-deployed weaker models require less
coordination to execute but surface read and write behavior that may
in turn compromise consistency |2, 9,22,48]. With these alternative
models, it is up to users to decide when weakened guarantees are

Ownership

O0O000O0

Rendezvous Hashing

A Name-Based Mapping Scheme for Rendezvous

David G. Thaler and Chinyva V. Ravishankar
Flectrical Engineering and Computer Science Department,
The University ol Michigan, Ann Arbor, Michigan 48109-2122

thalerd@eecs.umich.edu ravi@Qeecs.umich.edu

November 13, 1996

Abstract

Clusters ol identical intermediate servers are often created to improve avallability and robusiness
in many domains. The use of proxy servers for the WWW and of Rendezvous Points [1] in multicast
routing are two such situations. However, this approach is inefficient if identical requests are received
and processed by multiple servers. We present an analysis of this problem, and develop a method
called the Highest Random Weight (HRW) Mapping that eliminates these difficulties. Given an object
name, HRW maps it to a server within a given cluster using the object name, rather than any a prior
knowledge of server states. Since HRW always maps a given object name 1o the same server within a

given cluster, 1t may be used locally at client sites to achieve consensus on object-server mappings.

T™TRET 1 3 * T TTr T 2T X7 b | h A | 2 ., L | * 3 . 3 . 3 * P | sy 0 . Fal

origin server we're
deciding on the owner of

hash function we decided upon

.‘h(4Sn56) — W"

set of live servers the weight or priority

Fallure Detection

SWIM: Scalable Weakly-consistent /nfection-style Process Group Membership
Protocol

Abhinandan Das, Indranil Gupta, Ashish Motivala*
Dept. of Computer Science, Cornell University

Ithaca NY 14853 USA
{asdas, gupta, ashish}@cs.cornell.edu

Abstract

Several distributed peer-to-peer applications require
weakly-consistent knowledge of process group membership
information at all participating processes. SWIM is a
generic software module that offers this service for large-
scale process groups. The SWIM effort is motivated by the
unscalability of traditional heart-beating protocols, which
either impose network loads that grow quadratically with
group size, or compromise response times or false positive
frequency w.r.t. detecting process crashes. This paper re-
ports on the design, implementation and performance of the

1. Introduction

As you swim lazily through the milieu,
The secrets of the world will infect you.

Several large-scale peer-to-peer distributed process groups
running over the Internet rely on a distributed membership
maintenance sub-system. Examples of existing middleware
systems that utilize a membership protocol include reliable
multicast [3, 11], and epidemic-style information dissemi-
nation [4, 8, 13]. These protocols in turn find use in applica-
tions such as distributed databases that need to reconcile re-
cent disconnected updates [14], publish-subscribe systems,

Memberlist

Push and Pull

Convergence

Causality

° Arugula Calzone

Jack

i 1 gBurgers - ‘Daalix'. P

R Eg‘lhappened-before or}e
€ ppeoadivedot q S
JerIS happened-before d

Lattices

Causality

Version Vectors

S

[1,0,0]

O4

[1,0,0]

[1,1,0]
@

[1,1,1]

[1,2,1]

10,0,1]

n

. @, 10,0,0]
[1,0,0] 0:.. [0,1,0] b .",0 [0,0,1]
1,1,0] "®

& [1,1.1]

2,1,1] 0" .'0 [1,1,2]

Coordination-free
Distributed
Map

type SharedMap struct {
storage map [Key|SharedMapRecord
V clock.VersionVector

h

type SharedMapRecord struct {
value Value
dot clock.VVDot

Send Version:
Send our Version Vector.

Received Version(V):
For each record(R) in our map:
If (V happened-before R.Dot) OR
(V is-concurrent-with R.Dot):
Add R to Delta.

Send Delta.

Received Delta(D):
V = Our Version Vector

For each record(R) in D:
IT R.Dot happened-before V:
Skip 1it.
R’ = Local Record
IT R".Dot happened-before D.Version:

Merge 1t.

R and R’ are concurrent:

= Rendesvous

Delta-state
CRDT Map

Algorithm 1: A-CRDT replication
upon on VersionVector(Vv, REPLICA) do

A-CRDTs: Makii A «— getDelta(vv)

if A.size() >0
REPLICA.send(A)

Albert van der Linde N
a.linde@campus.fct.unl.pt jc.le
NOV

Universi

upon delta(A) do
self.state.applyDelta(A)
self.version Vector.update(A)

ABSTRACT

Replication is a key technique for providing both far
erance and availability in distributed systems. Hg
managing replicated state, and ensuring that these
cas rcmailn consistent, is a non trivial task, in pax
in scenarios where replicas can reside on the clier
as clients might have unrecliable communication ck
and hence, exhibit highly dynamic communication pa
One way to simplify this task is to resort to CRDTsS,
arc data types that enable replication and operatic
replicas with no coordination, ensuring eventual sta
vergence when these replicas are synchronized. He
when the communication patters, and therefore symchrom = oo OEHRFFEIFOGUEEs Eimonamovemeadmronssepriracsrom——

nization patterns, are highly dynamic, existing designs of causality) but also fits poorly in scenarios \.Nhef'e there are

T T Y R | N

periodically do (pull model)
r +— randomReplica()
r.send (self.versionVector)

Edge Compute

Coordination-free
Distributed
Systems

Single System Image

A Certain Tendency Of The Database
Community™

Christopher S. Meiklejohn
Université catholique de Louvain

" We posit that striving for distributed
systems that provide “single system
image” semantics is fundamentally

We posit tha

ven e 3 flawed and at odds with how systems
timization of thi

that facilitatesc: Opera,te in the phySica,]. WOP].d..

in a system. W
to address the proplems or computation over “eventually consistent” -

formation in a large-scale distributed sysbern.

18473v3 [cs.DC| 8 Mar 2017

We need new
metaphors.

We need new
Intuition.

Thank You.

@tbmcmullen

