CI/CD at scale
Lessons from Linkedln and Mockito

QCon, San Francisco, 11-2017

e Szczepan Faber @mockitoguy

e Born in Poland (we like our zzz’s)
In US since 2015 e Want to write great tests?
My workshop at QCon on Thursday:
e Codes professionally since 2002 http://bit.do/gcon-testing R
o Creator of mockito.org in 2007 e Want to innovate and push CD in Open Source?
e Core dev of gradle.org 1.x and 2x in 2011-2015 Join shipkit.org
o Tech Lead at LinkedIn Dev Tools since 2015 New project used by Mockito!
http://bit.do/li-tools
e Author on LinkedIn: http://bit.do/mockitoguy

e How to build great code review culture? http://bit.do/li-code-review

@LinkedInEng | @mockitoguy

http://bit.do/li-tools
http://bit.do/mockitoguy
http://bit.do/li-code-review
http://bit.do/qcon-testing

— M
Aldgate
Metropolitan line

Imagine = =
productivity .. | 1'%

without the release overhead

@LinkedInEng | @mockitoguy

Get ready to be excited about CD!

1. CD at LinkedIn (@LinkedInEng)

e linkedin.com adopted CD in 2015, shipping 3x day to 500M users.
e I'm an architect, tech lead, engineer working on development tools at
LinkedIn since 2015.

e Kudos to great engineers working at LinkedIn, linkedin.com and the
tools. I am a part of a team.

LinkedIn Engineering (3000+)

Foundation team (300+)

Development Tools

Build tools, Gradle, ClI
Code review, IDEs
and more!

2. CD in OSS Mockito
(@MockitoJava)

e [created mocking framework
Mockito in 2007

e The team adopted CD in 2014

e We ship every pull request to
production to estimated 2M
users

@LinkedInEng | @mockitoguy

CD at linkedin.com by the numbers

e Last week (5-11 Nov ‘17)

o 1000 commits, 300 unique committers across 4 main codebases

o Web app, API server app, Android app, iOS app

o The stats exclude other codebases (libraries, downstream microservices)

o LinkedIn does not use (nor wants or needs) mono-repo. We currently have 7000+ codebases.

e Last quarter (Q3 17):

o 300 pushes to production (web app + api server)

o 21 mobile app pushes (android + iOS, excluding Beta)
e LinkedIn engineering is more than linkedin.com

o Other products exercise CD as well but don’t have such big codebase or number of committers
o linkedin.com (flagship) is very progressive and paves the way for other LinkedIn software products

@LinkedInEng | @mockitoguy

Part 1.
CD is hard

What do we do if something is hard?

e Adelisor Westoy Signatine Tosies

A
T

CONTINUOUS
DELIVERY

Jez HUMBLE
DaAviD FARLEY

Foreword by Martin Fowler

Why CD in linkedin.com?

In 2015 we launched 3x3 project - 3 releases per day, 3 hour max time commit-to-production.
Our goals:

e reduce the lead time to make positive business impact
o ship features to production faster
® increase engineering productivity and happiness
o avoid release overhead
m avoid wasted time on stabilizing (bugfixing) the release branch.
Code should be always stable and ready to ship!
m avoid wasted time on cherry-picking. Trunk based development.
o avoid feature rush - last minute commit volume spike before the release
e improve quality
o small incremental releases pose small risk and are easier to fix
o avoid rollbacks and hotfixes. Instead we fix forward

The arguments apply to every software project!

@LinkedInEng | @mockitoguy

X3 @LI

e Why 3 times per day?
o Because we want to iterate fast. Plus it helps with resilience because we can afford to miss a release
e Why 3 hours max time commit-to-production?

o Because to ship 3 times a day, the commit-to-production pipeline needs speed
o And it forces us to sort out our testing strategy (not enough time for manual or slow tests)

In 2015 we completed mobile web and mobile apps
In 2016 we completed desktop web
Today we release linkedin.com several times a day

LinkedIn Mobile apps are released every week, with 3 beta releases per week

(iOS Beta - once a week)

@LinkedInEng | @mockitoguy

CD lessons @LI

e Learning how to write great tests
- what to test, how to test, how to write code that is easy to test
e Flaky test is worse than no test
- detecting flaky tests automatically, overnight, using A/A testing
e Production grade tests and infrastructure
- in the past, tests and build code were not considered equally important as
production code
e Many existing tools, including OSS did not scale for CD
e Need for speed — testing in parallel and distributed
e Master branch always green
- Running all validations before code is merged to master

@LinkedInEng | @mockitoguy

Current 3x3 stats for linkedin.com

Commits and Avg. time
: . : : : # of actual and target
unique committers | commit-to-shippable in last 1 .
i1 last week week releases in Q3 2017

Web 317/115 150 min. 173/162
API 183/77 69 min. 123/162
i0S 164/69 165 min. | 10/12
Android 24172 72 min. J 11/12
Combined | 905*/333

(*) in actuality, it is higher because commits to libraries are not included
@LinkedInEng | @mockitoguy

Opportunities @LI

Minimize commit-to-shippable time
Increase commit-to-shippable pipeline success rate (pipeline & tests stability)

Hit the desired number of production releases
Increase discipline of fixing flaky tests

Avoid redundant work in the pipeline

For Android: simulator service, speed

For iOS: Beta channel, Swift compiler stability and speed
For Web app: browser cache

For API server: avoid redundant work (Gradle Distributed Cache)
BTW. we use Play on Gradle for our API server: http://bit.do/play-on-gradle

And many more! We keep improving the system!!!

@LinkedInEng | @mockitoguy

http://bit.do/play-on-gradle

3x3:i0S Build Speed and
Stability

Kegiu Hu April 7, 2016
At the beginning of last year, alongside
the development of Project Voyager,

LinkedIn’s new flagship mobile
application, we started...

Topics: Mobile, Testing, iOS, build tools

@LinkedInEng | @mockitoguy

3x3 resources

LinkedIn Engineering Blog: http://bit.do/li-3x3

Linked in - Engineering

3x3: Speeding Up Mobile
Releases

Drew Hannay February 3, 2016
LinkedIn recently released Project
Voyager, our codename for the new

version of our flagship application for
Android, iOS, and mobile..

Topics: Android, Mobile, i0S, Testing

3x3: Speeding Up Mobile
Releases

Drew Hannay February 3, 2016
Linkedin recently released Project
Voyager, our codename for the new

version of our flagship application for
Android, iOS, and mobile..

Topics: Android, Mobile, i0S, Testing

Home Blog Data

Search results for "3x3"

http://bit.do/li-3x3

Development Workflow @LI

CD requires disciplined development workflow.
How software is developed at LinkedIn? (all our software, not only linkedin.com)

Multi-codebase architecture, 7000 codebases, 60% active

Every codebase is governed by our “Multiproduct” framework
Every Multiproduct has independent release cadence

Every code change produces new version

Trunk based development

Mandatory code review (code owner must approve every change)

Automation of commit-to-production pipeline

@LinkedInEng | @mockitoguy

Every codebase is a Multiproduct @LI

e One engineering culture
e Every engineer can contribute to any codebase
e Why matters? Easier to introduce CD into one culture

@LinkedInEng | @mockitoguy

Every change is a new version @LI

e And every new version can be shipped to production

e Why matters?

o Makes it impossible to defer quality.
o Clean code every day!

@LinkedInEng | @mockitoguy

Trunk based development @LI

e No long-lived feature branches
e All changes on main branch, which is always stable and ready to ship

e Incremental code changes, hiding incomplete features

e Feature toggles, “branch by abstraction” pattern
http://bit.do/branch-by-abstraction

e Why matters? Forces small, incremental changes. Avoids merge and
cherry-picking overhead.

@LinkedInEng | @mockitoguy

http://bit.do/branch-by-abstraction

Mandatory code review @LI

e Somebody reads my code (and wants me to fix it)!

e Culture of feedback, learning and improving
http://bit.do/li-code-review
e Why matters? Clean, elegant code makes it easier to iterate

@LinkedInEng | @mockitoguy

http://bit.do/li-code-review

Downstream dependency testing @LI

Building code that depends on my code
Strong signal in our CI pipeline
Flaky tests are a problem to the entire ecosystem

Why matters? avoiding regressions, catching integration problems early

@LinkedInEng | @mockitoguy

Automation of commit-to-production @LI

e The code I write or review goes to production within hours
e | am responsible for the quality

e Why it matters? Requires state of the art automated testing

o BTW.Irun a Java testing workshop on Thursday at QCon
http://bit.do/gcon-testing

@LinkedInEng | @mockitoguy

http://bit.do/qcon-testing

. . e Code change
C I/ G D plpe I | ne @ I_I e Code review (strong code ownership, owner must approve)
For all our software, not only ° PDre/post pushdvalidac‘lcion (CI b.uilds) i .
. . t test test that
components of linkedin.com ° owns re'am ependency testing (test code that depend on me)
e New version ready!
Libraries
Apps

e Staging e Consumers that use wildcard versions pick up
e (Canary (deploy and test on single host) new version in the next build.

o Mobile uses Beta channel e Consumers that use pinned version can be
® Ramp-up features (feature toggles) updated automatically using “Push my

o Code push != feature push Upgrade” system.
e Remove feature toggle (dead code) e We can deprecate/end-of-life previous versions

Dev workflow for all software at LinkedIn. Ready for part 2 (OSS)?

@LinkedInEng | @mockitoguy

@mockitoguy

Foo il Wiy Siymatioo S

Part 2 CONTINUOUS |
CD In USS DELIVERY

Mockito

Powered by shipkit.org

Jez HumBLE §
DaviD FARLEY

Forewor, d by Martin Fowler

Open Source Mocking Framework for Java

Mockito started in 2007
1.0 in 2008
Hit mainstream in 2010

Mostly manual releases..

mOC klt Mockito

I"'m a mockist but existing mock frameworks just don’t appeal to me. They spoil my TDD

experience. They harm code readability. I needed something better. That’s why I came up
with Mockito.

@mockitoguy

il

|
gl

w

10.00%

C

ombined re

sult puts M

30.00%

40.00%

ockito on 3

rd place!

50.00% 60.00%

T0.00%

TAKIA

2014 - Mockito adopts CD.

e Prevent release procrastination (dreading to write release notes...)

e Every merged pull request produces a new version and ships to public repo

e Scale: we estimate 2M users

Add more commits by pushing to the sf branch on mockito/shipkit.

|
i ° All checks have passed

2 successful checks

° This branch has no conflicts with the base branch

Merging can be performed automatically.
Merge pull request A2 You can also open this in GitHub Desktop

@mockitoguy

Search Results

Groupld Artifactid Latest Version
org.mockito mockito-core 2.8.47 all (242)

Benefits of CD in 0SS

Productivity — zero release overhead

Happy users — get features faster

Faster debugging — quickly identify bad version (MTTR)
Sustainability — release & stay alive

No waste - no unreleased code

Quality — self-enforced craftsmanship of every change

Thriving, engaged community — contributions are released quickly

@mockitoguy

Community Feedback

e (Quality anxiety
- you ship every pull request to production, are you shipping every bug, too?
- we ensure quality via immense battery of tests and rigorous code review
e What version of “mockito-core” to use?
- currently 244 versions in Maven Central
- use latest! We take compatibility VERY seriously. Sem ver!
e Dependency management cost
- worry that any version upgrade may bring incompatibilities to the dependency graph
- we get it. We strive to minimize Mockito dependencies. We understand that every
dependency is a liability to our customers

@mockitoguy

Mockito releases
By Shipkit

e Shipkit - toolkit for shipping
it for Java libraries

e Passionate about release
automation:

e http://shipkit.org

@mockitoguy

Pull Request :jj::: Code Review __:;;: Build and test

--—"''_'_-_-_._—____-_'_'_"'—-—-..H__‘
Publish to well-known repo:

- JCenter

- Maven Central

- mockito/maven in Bintray
e

please contribute!

http://shipkit.org

Ready for CD?

Imagine how fast you can ship changes that can create positive business impact
Imagine unhindered productivity without the release overhead

Imagine higher quality because smaller, incremental releases are a smaller risk
Imagine that every code change is excellent, with clean code and great tests
Imagine how reliable the commit-to-production pipeline is if it is battle tested daily

e Atlinkedin.com we land 1000 commits per week and ship to production several
times a day to 500M+ users.

e In the Open Source, Mockito library ships to production every pull request to
estimated 2M users

Now it is your turn! Questionst

@LinkedInEng | @mockitoguy

