
@LinkedInEng | @mockitoguy

CI/CD at scale
Lessons from LinkedIn and Mockito

QCon, San Francisco, 11-2017
● Szczepan Faber @mockitoguy

● Born in Poland (we like our zzz’s)

In US since 2015

● Codes professionally since 2002

● Creator of mockito.org in 2007

● Core dev of gradle.org 1.x and 2.x in 2011-2015

● Tech Lead at LinkedIn Dev Tools since 2015

http://bit.do/li-tools

● Author on LinkedIn: http://bit.do/mockitoguy

● How to build great code review culture? http://bit.do/li-code-review

● Want to write great tests?

My workshop at QCon on Thursday:

http://bit.do/qcon-testing

● Want to innovate and push CD in Open Source?

Join shipkit.org

New project used by Mockito!

http://bit.do/li-tools
http://bit.do/mockitoguy
http://bit.do/li-code-review
http://bit.do/qcon-testing

@LinkedInEng | @mockitoguy

Imagine
productivity

without the release overhead

@LinkedInEng | @mockitoguy

2. CD in OSS Mockito

(@MockitoJava)

● I created mocking framework

Mockito in 2007

● The team adopted CD in 2014

● We ship every pull request to

production to estimated 2M

users

Get ready to be excited about CD!

Development Tools

● Build tools, Gradle, CI
● Code review, IDEs
● and more!

● I’m an architect, tech lead, engineer working on development tools at

LinkedIn since 2015.

1. CD at LinkedIn (@LinkedInEng)

● linkedin.com adopted CD in 2015, shipping 3x day to 500M users.

LinkedIn Engineering (3000+)

Foundation team (300+)

● Kudos to great engineers working at LinkedIn, linkedin.com and the

tools. I am a part of a team.

@LinkedInEng | @mockitoguy

CD at linkedin.com by the numbers
○ 1000 commits, 300 unique committers across 4 main codebases

○ Web app, API server app, Android app, iOS app

○ The stats exclude other codebases (libraries, downstream microservices)

○ LinkedIn does not use (nor wants or needs) mono-repo. We currently have 7000+ codebases.

● Last quarter (Q3 ‘17):

○ 300 pushes to production (web app + api server)

○ 21 mobile app pushes (android + iOS, excluding Beta)

● LinkedIn engineering is more than linkedin.com

○ Other products exercise CD as well but don’t have such big codebase or number of committers

○ linkedin.com (flagship) is very progressive and paves the way for other LinkedIn software products

● Last week (5-11 Nov ‘17)

Part 1.
CD is hard

What do we do if something is hard?

@LinkedInEng | @mockitoguy

Why CD in linkedin.com?

● reduce the lead time to make positive business impact

○ ship features to production faster

● increase engineering productivity and happiness

○ avoid release overhead

■ avoid wasted time on stabilizing (bugfixing) the release branch.

Code should be always stable and ready to ship!

■ avoid wasted time on cherry-picking. Trunk based development.

○ avoid feature rush - last minute commit volume spike before the release

● improve quality

○ small incremental releases pose small risk and are easier to fix

○ avoid rollbacks and hotfixes. Instead we fix forward

The arguments apply to every software project!

In 2015 we launched 3x3 project - 3 releases per day, 3 hour max time commit-to-production.

Our goals:

@LinkedInEng | @mockitoguy

3x3 @LI

○ Because we want to iterate fast. Plus it helps with resilience because we can afford to miss a release

● Why 3 hours max time commit-to-production?

○ Because to ship 3 times a day, the commit-to-production pipeline needs speed

○ And it forces us to sort out our testing strategy (not enough time for manual or slow tests)

● In 2015 we completed mobile web and mobile apps

● In 2016 we completed desktop web

● Today we release linkedin.com several times a day

● LinkedIn Mobile apps are released every week, with 3 beta releases per week

(iOS Beta - once a week)

● Why 3 times per day?

@LinkedInEng | @mockitoguy

● Learning how to write great tests

- what to test, how to test, how to write code that is easy to test

● Flaky test is worse than no test

- detecting flaky tests automatically, overnight, using A/A testing

● Production grade tests and infrastructure

- in the past, tests and build code were not considered equally important as

production code

● Many existing tools, including OSS did not scale for CD

● Need for speed – testing in parallel and distributed

● Master branch always green

- Running all validations before code is merged to master

CD lessons @LI

@LinkedInEng | @mockitoguy

Current 3x3 stats for linkedin.com
Commits and

unique committers

in last week

Avg. time

commit-to-shippable in last

week

of actual and target

releases in Q3 2017

(*) in actuality, it is higher because commits to libraries are not included

Web 317/115 150 min. 173/162

API 183/77 69 min. 123/162

iOS 164/69 165 min. 10/12

Android 241/72 72 min. 11/12

Combined 905*/333

@LinkedInEng | @mockitoguy

Opportunities @LI

● Increase discipline of fixing flaky tests

● Avoid redundant work in the pipeline

● For Android: simulator service, speed

● For iOS: Beta channel, Swift compiler stability and speed

● For Web app: browser cache

● For API server: avoid redundant work (Gradle Distributed Cache)

BTW. we use Play on Gradle for our API server: http://bit.do/play-on-gradle

● Minimize commit-to-shippable time

● Increase commit-to-shippable pipeline success rate (pipeline & tests stability)

● Hit the desired number of production releases

And many more! We keep improving the system!!!

http://bit.do/play-on-gradle

@LinkedInEng | @mockitoguy

3x3 resources
LinkedIn Engineering Blog: http://bit.do/li-3x3

http://bit.do/li-3x3

@LinkedInEng | @mockitoguy

Development Workflow @LI

● Multi-codebase architecture, 7000 codebases, 60% active

● Every codebase is governed by our “Multiproduct” framework

● Every Multiproduct has independent release cadence

● Every code change produces new version

● Trunk based development

● Mandatory code review (code owner must approve every change)

● Automation of commit-to-production pipeline

CD requires disciplined development workflow.

How software is developed at LinkedIn? (all our software, not only linkedin.com)

@LinkedInEng | @mockitoguy

Every codebase is a Multiproduct @LI
● One engineering culture

● Every engineer can contribute to any codebase

● Why matters? Easier to introduce CD into one culture

@LinkedInEng | @mockitoguy

Every change is a new version @LI
● And every new version can be shipped to production

● Why matters?

○ Makes it impossible to defer quality.

○ Clean code every day!

@LinkedInEng | @mockitoguy

Trunk based development @LI

● Incremental code changes, hiding incomplete features

● Feature toggles, “branch by abstraction” pattern

http://bit.do/branch-by-abstraction

● Why matters? Forces small, incremental changes. Avoids merge and

cherry-picking overhead.

● No long-lived feature branches

● All changes on main branch, which is always stable and ready to ship

http://bit.do/branch-by-abstraction

@LinkedInEng | @mockitoguy

Mandatory code review @LI
● Somebody reads my code (and wants me to fix it)!

● Culture of feedback, learning and improving

http://bit.do/li-code-review

● Why matters? Clean, elegant code makes it easier to iterate

http://bit.do/li-code-review

@LinkedInEng | @mockitoguy

Downstream dependency testing @LI
● Building code that depends on my code

● Strong signal in our CI pipeline

● Flaky tests are a problem to the entire ecosystem

● Why matters? avoiding regressions, catching integration problems early

@LinkedInEng | @mockitoguy

Automation of commit-to-production @LI
● The code I write or review goes to production within hours

● I am responsible for the quality

● Why it matters? Requires state of the art automated testing

○ BTW. I run a Java testing workshop on Thursday at QCon

http://bit.do/qcon-testing

http://bit.do/qcon-testing

@LinkedInEng | @mockitoguy

CI/CD pipeline @LI
For all our software, not only
components of linkedin.com

● Code change

● Code review (strong code ownership, owner must approve)

● Pre/post push validation (CI builds)

● Downstream dependency testing (test code that depend on me)

● New version ready!

● Staging

● Canary (deploy and test on single host)

○ Mobile uses Beta channel

● Ramp-up features (feature toggles)

○ Code push != feature push

● Remove feature toggle (dead code)

● Consumers that use wildcard versions pick up

new version in the next build.

● Consumers that use pinned version can be

updated automatically using “Push my

Upgrade” system.

● We can deprecate/end-of-life previous versions

Apps

Libraries

Dev workflow for all software at LinkedIn. Ready for part 2 (OSS)?

@mockitoguy

Part 2.
CD. in OSS
Mockito
Powered by shipkit.org

@mockitoguy

Open Source Mocking Framework for Java
● Mockito started in 2007

● 1.0 in 2008

● Hit mainstream in 2010

● Mostly manual releases...

Combined result puts Mockito on 3rd place!

@mockitoguy

2014 - Mockito adopts CD.

● Every merged pull request produces a new version and ships to public repo

● Scale: we estimate 2M users

● Prevent release procrastination (dreading to write release notes…)

@mockitoguy

Benefits of CD in OSS
● Productivity – zero release overhead

● Happy users – get features faster

● Faster debugging – quickly identify bad version (MTTR)

● Sustainability – release & stay alive

● No waste - no unreleased code

● Quality – self-enforced craftsmanship of every change

● Thriving, engaged community – contributions are released quickly

@mockitoguy

Community Feedback
● Quality anxiety

 - you ship every pull request to production, are you shipping every bug, too?

 - we ensure quality via immense battery of tests and rigorous code review

● What version of “mockito-core” to use?

- currently 244 versions in Maven Central

- use latest! We take compatibility VERY seriously. Sem ver!

● Dependency management cost

- worry that any version upgrade may bring incompatibilities to the dependency graph

- we get it. We strive to minimize Mockito dependencies. We understand that every

dependency is a liability to our customers

@mockitoguy

Mockito releases
By Shipkit

● Shipkit - toolkit for shipping

it for Java libraries

● Passionate about release

automation?

● http://shipkit.org

http://shipkit.org

@LinkedInEng | @mockitoguy

Ready for CD?
● Imagine how fast you can ship changes that can create positive business impact

● Imagine unhindered productivity without the release overhead

● Imagine higher quality because smaller, incremental releases are a smaller risk

● Imagine that every code change is excellent, with clean code and great tests

● Imagine how reliable the commit-to-production pipeline is if it is battle tested daily

● At linkedin.com we land 1000 commits per week and ship to production several

times a day to 500M+ users.

● In the Open Source, Mockito library ships to production every pull request to

estimated 2M users

Now it is your turn! Questions?

