The Power of Snapshots

Stateful Stream Processing
with Apache Flink

Stephan Ewen
dataArtisans

QCon San Francisco, 2017

dataArtisans

Original creators of
Apache Flink®

PLATFORM

dA Platform 2
Open Source Apache Flink +
dA Application Manager

Stream Processing

What changes faster? Data or Query? L.

Data changes slowly Data changes fast
compared to fast application logic
changing queries is long-lived

ad-hoc queries, data exploration, continuous applications,
ML training and data pipelines, standing queries,

(hyper) parameter tuning anomaly detection, ML evaluation, ...
Batch Processing Stream Processing

Use Case Use Case

Batch Processing

Application Database Queries &
Updates

Sensor
mn o I
o U U — .
Other Event Analytics
Distributed File System, SAN, ...
birth of the data storing data applications schedule
as streams of events at rest computation on the data

Stream Processing

Application Application == - _L
sensor [a-
Application [E== - J

Other

birth of the data applications computing
as streams of events over event data streams

Stateful
Stream Processing

Moving State into the Processors

I [ot | I B 11111 IR SN TTTTT
el G e

state External DB

Stateless Stateful
Stream Processor Stream Processor

Apache Flink

Apache Flink in a Nutshell

Stateful computations over streams
real-time and historic
fast, scalable, fault tolerant, in-memory,
event time, large state, exactly-once

_ Queries -
3 s Streams - £7
Applications] \ /' % .

| = —
Devices » % 7’ aFlink ? - Stream

etc Historic <
| ” %%
%%% File / Object
Storage
10

Event Streams

real-time and
hindsight

The Core Building Blocks

State

complex
business logic

(Event) Time

consistency with
out-of-order data
and late data

Snapshots

forking /
versioning /
time-travel

11

Stateful Event & Stream Processing L.

val lines: DataStream[String]

env.addSource(new FlinkKafkaConsumer@9(..)) i}- Source

val events: DataStream[Event] = lines.map((line) => parse(line)) }_ Transformation

val stats: DataStream[Statistic] = stream
.keyBy("sensor"
.timeWindow(Time.seconds(5)) Transformation
.sum(new MyAggregationFunction())

stats.addSink(new RollingSink(path))

@ }- Sink

__ Streaming
Dataflow

Window | Sink
(state read/write)

Source Transform

Stateful Event & Stream Processing

Scalable embedded state

@ Access at memory speed &
scales with parallel operators

13

Event time and Processing Time

Flink Flink
Event Producer Message Queue Data Source Window Operator
—1
E—

= — @ —— B —— 1

5 L't

/f

Ingestion c Processing -7
Time

Time _~#

Fvent time, Watermarks, as in the Dataflow model

14

Powerful Abstractions L.

Layered abstractions to
na\/igate Simple to Comp|e)(use cases SELECT room, TUMBLE_END(rowt-in;e, INTERVAL '1' HOUR), AVG(temp)

FROM sensors
GROUP BY TUMBLE(rowtime, INTERVAL '1' HOUR), room

High-level
Analytics API

.keyBy("sensor")
.timeWindow(Time.seconds(5))
.sum((a, b) -> a.add(b))

Stream- & Batch
Data Processing

_ val stats = stream

Stateful Event- Process Function (events, state, time)
Driven Applications

def processElement(event: MyEvent, ctx: Context, out: Collector[Result]) = {
// work with event and state
(event, state.value) match { .. }

out.collect(..) // emit events
state.update(..) // modify state

// schedule a timer callback
ctx.timerService.registerEventTimeTimer(event.timestamp + 500)]-5

Distributed Snapshots

Event Sourcing + Memory Image

periodically snapshot
the memory

main memaory

L[= |
event / N A
command)
] (event log () [R Update local
variables/structures

persists events
(temporarily)

Process

17

Event Sourcing + Memory Image

Recovery: Restore snapshot and replay events
since snapshot

Ll = |

B0 eentiog (WmEmE

persists events
(temporarily)

Process

18

Consistent Distributed Snapshots

Scalable embedded state

@ Access at memory speed &
scales with parallel operators

Checkpoint Barriers

data stream

<+ newer records older records =
checkpoint checkpoint stream record
barrier n barrier n-1 (event)
l J | J J
Y f f
part of part of part of

checkpoint n+1 checkpoint n checkpoint n-1

20

Consistent Distributed Snapshots

Irigger checkpoint Inject checkpoint barrier
[
T T i
-

EEEE() gy), -

N

Consistent Distributed Snapshots

Jake state snapshot Trigger state
Ccopy-on-write

T T TR : :.
EEEE() gy -

22

Consistent Distributed Snapshots

Persist state snapshots Processing pipeline continues Persist
snapshots

\ asynchronously
-] H B
IIIIO
]

EEEE() gy -

23

Consistent Distributed Snapshots

Rolling back computation
Re-processing @

Re-load state

in input streams

ReW @

25

Consistent Distributed Snapshots

Restore to different

orograms —]

k@

26

Checkpoints and Savepoints
in Apache Flink

Speed or Operability?

What to optimize for?

Flexible
Fast snapshots Operations on
Snapshots

Checkpoint Savepoint

28

Savepoints: Opt. for Operability

= Self contained: No references to other checkpoints
= Canonical format: Switch between state structures
= Efficiently re-scalable: Indexed by key group

= Future: More self-describing serialization format for to
archiving / versioning (like Avro, Thrift, etc.)

29

Checkpoints: Opt. for Efficiency g

Often incremental:
* Snapshot only diff from last snapshot
* Reference older snapshots, compaction over time

= Format specific to state backend:
* No extra copied or re-encoding
+ Not possible to switch to another state backend between checkpoints

= Compact serialization: Optimized for speed/space, not long term
archival and evolution

= Key goups not indexed: Re-distribution may be more expensive

30

What else are snapshots /
checkpoints good for?

What users built on checkpoints

= Upgrades and Rollbacks

= (Cross Datacenter Failover

= State Archiving

= State Bootstrapping

= Application Migration

= Spot Instance Region Arbitrage
= A/B testing

32

Distrib

uted Sr

dNC

apshots

Side e

tects

Transaction coordination for side fx

Snapshots may include side effects

P

- @.. =
LR

\ J
Y

One snapshot can transactionally move
data between different systems

34

Transaction coordination for side fx L.

= Similar to a distributed 2-phase commit
= Coordinated by asynchronous checkpoints, no voting delays

= Basic algorithm:
+ Between checkpoints: Produce into transaction or Write Ahead Log
« On operator snapshot: Flush local transaction (vote-to-cornmit)
* On checkpoint complete: Commit transactions (commit)
* On recovery: check and commit any pending transactions

35

Distributed Snapshots
and Application Architectures

(A Philosophical Monologue)

Good old centralized architecture L.

Application Application Application

Application

The grumpy
DBA

37

Stateful Stream Proc. & Applications

Application | Application Application

©

still involves
managing databases

Application Application

decentralized infrastructure
decentralized responsibilities

DevOps

38

Stateless Application Containers

State management
is nasty, let's pretend we don't
have to do it

39

Stateless Application Containers

Broccoli {state-rmanagerment)

is nasty, let's pretend we don't
have to eat e it

Kudos to Kiki Carter
for the Broccoli
Metaphor

40

Stateful Stream Proc. to the rescue

very simple: state is just part
of the application

Application

Sensor Application

»

APIs

41

Compute, State, and Storage

Classic tiered architecture Streaming architecture

compute
compute N
layer application state

)

N I
database stream storage “I“
. . layer and

snapshot storage .
\—)\ (backup) ~_ —

application state
+ backup 42

Performance

Classic tiered architecture Streaming architecture

T

all modifications
are local

synchronous reads/writes
| across tier boundary

A
asynchronous writes “I“
. of large blobs . .

~N ~_

43

Consistency

Classic tiered architecture Streaming architecture

exactly once
per state

NV

distributed transactions “I“/
. . at scale typically
at-most / at-least once

~N ~_

44

Scaling a Service L.

Classic tiered architecture Streaming architecture

T A A I. I. l.

provision
compute

provision compute

I and state together
[

p/

separately provision additional
database capacity 45

Rolling out a new Service

Classic tiered architecture

A

T
Pl

v

provision a new database
(or add capacity to an existing one)

Streaming architecture

provision compute
and state together

\IIIII/
(11

simply occupies some
additional backup space 46

Time, Completeness, Out-of-order

Classic tiered architecture Streaming architecture
event time clocks
define data completeness
T T ? event time timers
handle actions for

out-of-order data ~ —
-

~N ~_

47

Stateful Stream Processing

very simple: state is just part
of the application

Application

Sensor

»

Applicatios-,

APIs

48

The Challenges with that:

= Upgrades are stateful, need consistency
- application evolution and bug fixes

= Migration of application state
* cluster migration, A/B testing

= Re-processing and reinstatement
* fix corrupt results, bootstrap new applications

= State evolution (schema evolution)

49

The answer

(my personal and obviously biased take)

Consistent Distributed
Snapshots

50

Demo |

Agf PamickLumna pn L3 pamenes dsnbos w0 aAPatrm 2 e [Paers =urspe o« [Pyments derenes « [ramerss =urapes % [rayments (fuwan # Pl @0 poicklucer (g % 5 pmens-eshoc % [dhSlatlorm 2 | As % « [@ Puwents (Curcps. ¢ [3 Payments (Curope! % [Paymenss (Carope) Patrck
Secure hitos/appmanegeneme su-nest-1-devdakgs.nat ¢ e [L C @ Secwe aijdeshbos ca2-8eaa Sca 1 03ccavemosd=trued_g=lre *
= Dewo) Caber oakimarks W Compy 28618 3 Styl
Amlications
z
:
Al Release:Stable Status: Running Status: Cancelled 3y
Payements Dashbasrd [Europe] O] ® PoRad . *yiecd
[p—— e nnne ey @
Cancke Krakow i Kherkd
4 © Soenpa
Staging (eu-west-1] S F R v Vikrga o
s Wercegonna > SETbID % * Buhagest

Payments Dashboard

51

o
Thank you very much ©

(shameless plug)

The Apache Flink® Conference

FLINK™ san Francisco |
FORWARD® April9-10,2018 =

~

Become a Speaker at Flink Forward SanFrancisco

v

Submit your talk \ 1

52

dataArtisans

We are hiring!
data-artisans.com/careers

Appendix

Details about Snapshots

and Transactional
Side Effects

Exactly-once via Transactions

v global v global
chk-1 chk-2

i v chk-1 i v chk-2

‘ o~
/' 1 /' 1 o
- : ” : >
EEEEEN |EEEEEN EEEEE
1! 1l
B B b b b B 1 : b B B B b b I: B B b b b
L 20N T A T A | Il & ¥+ ¥ ¥ ¥ % | v v « v v

y y
Side effect

56

Transaction fails after local snapshot

chk-1 chk-2
1 1
1 1
: chk-1 :
I I
llllll.;llllll l
........
T T S i_ AT T
!
Y l./'l
TXN-1 <-—-7 TXN-2 TXN-3

v
Side effect

57

Transaction fails before commit...

chk-1 chk-2
1 1
1 1
: chk-1 :
I I
llllll.:llllll l
........
T T S i_ AT T
!
Y "./.l Y Y
TXN-1 <-—-7 TXN-2 TXN-3
\
V

Side effect

58

.. commit on recovery

chk-2 chk-3
recover i i
& TXN hand/ei i
EEEEEN!

V
Side effect

59

