Stateful Stream Processing with Apache Flink

The Power of Snapshots

QCon San Francisco, 2017

dataArtisans

PLATFORM

Original creators of Apache Flink® dA Platform 2 Open Source Apache Flink + dA Application Manager

Stream Processing

What changes faster? Data or Query?

Data changes slowly compared to fast changing queries

ad-hoc queries, data exploration, ML training and (hyper) parameter tuning

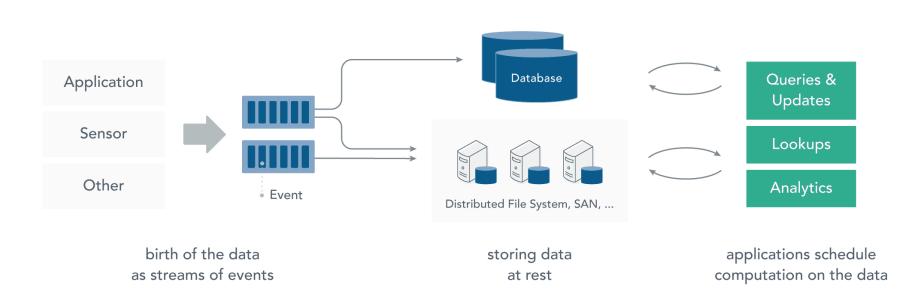
> Batch Processing Use Case

Data changes fast application logic is long-lived

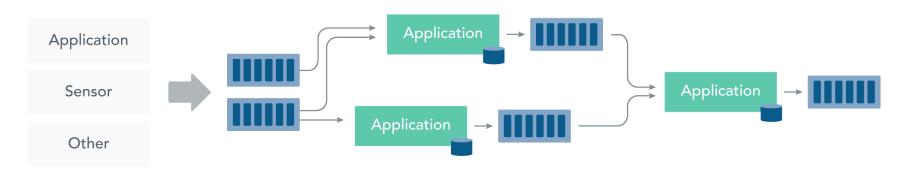
continuous applications, data pipelines, standing queries, anomaly detection, ML evaluation, ...

> Stream Processing Use Case

Batch Processing



Stream Processing

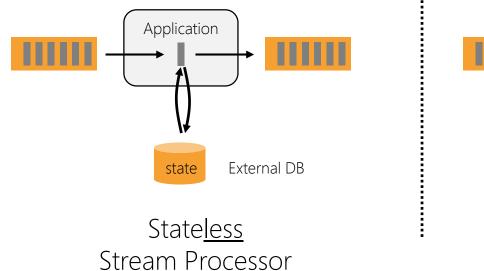


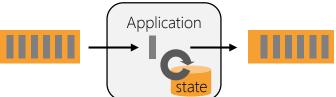
birth of the data as streams of events

applications computing over event data streams

Stateful Stream Processing

Moving State into the Processors



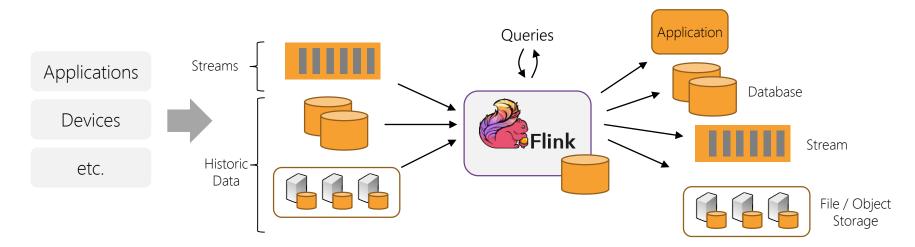


State<u>ful</u> Stream Processor

Apache Flink

Apache Flink in a Nutshell

Stateful computations over streams real-time and historic fast, scalable, fault tolerant, in-memory, event time, large state, exactly-once

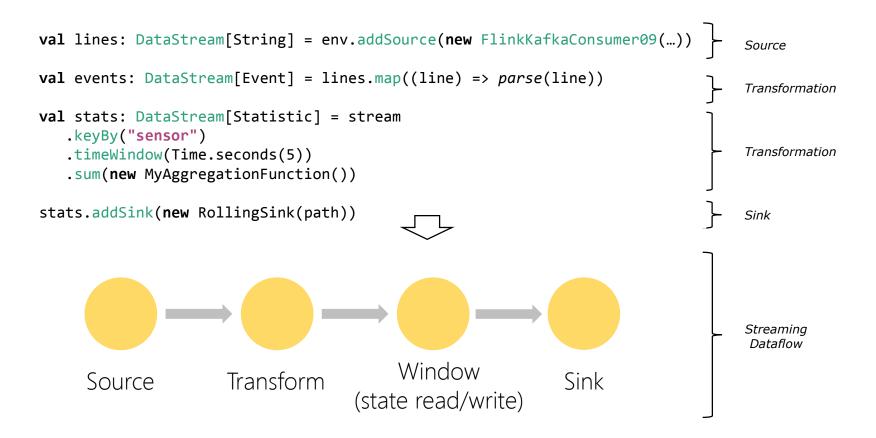


The Core Building Blocks

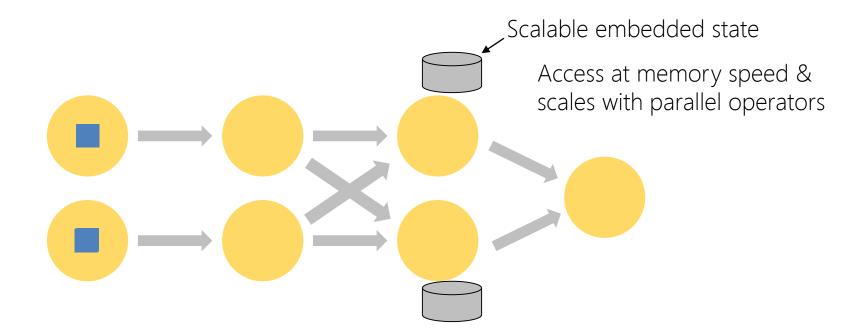
Event Streams State (Event) Time Snapshots

real-time and hindsight complex business logic consistency with out-of-order data and late data forking / versioning / time-travel

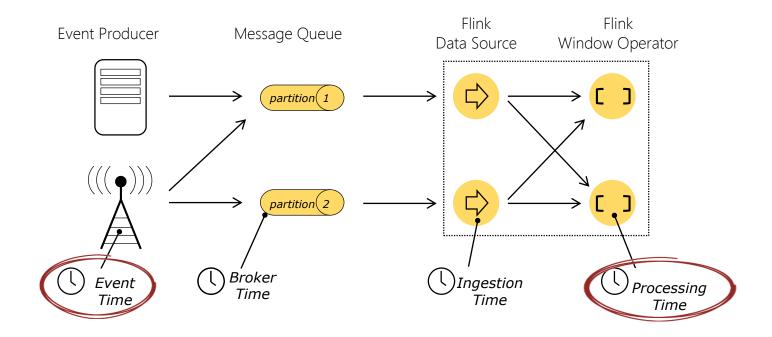
Stateful Event & Stream Processing



Stateful Event & Stream Processing



Event time and Processing Time



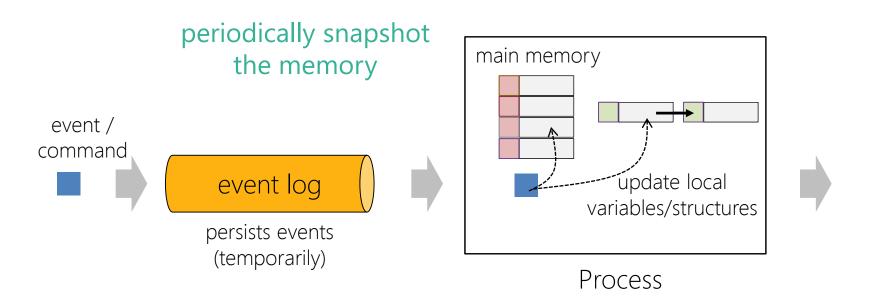
Event time, Watermarks, as in the Dataflow model

Powerful Abstractions

Layered abstractions to navigate simple to complex use cases SELECT room, TUMBLE_END(rowtime, INTERVAL '1' HOUR), AVG(temp) FROM sensors GROUP BY TUMBLE(rowtime, INTERVAL '1' HOUR), room High-level Stream SQL / Tables (dynamic tables) Analytics API **val** stats = stream Stream- & Batch .keyBy("sensor") DataStream API (streams, windows) .timeWindow(Time.seconds(5)) Data Processing $.sum((a, b) \rightarrow a.add(b))$ Stateful Event-Process Function *(events, state, time)* Driven Applications def processElement(event: MyEvent, ctx: Context, out: Collector[Result]) = { // work with event and state (event, state.value) match { ... } out.collect(...) // emit events state.update(...) // modify state // schedule a timer callback ctx.timerService.registerEventTimeTimer(event.timestamp + 500) 15

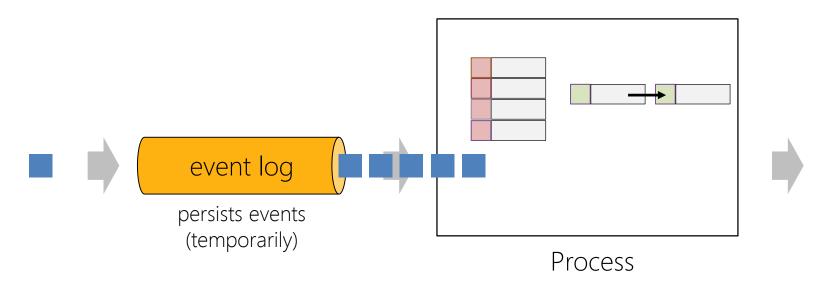
Distributed Snapshots

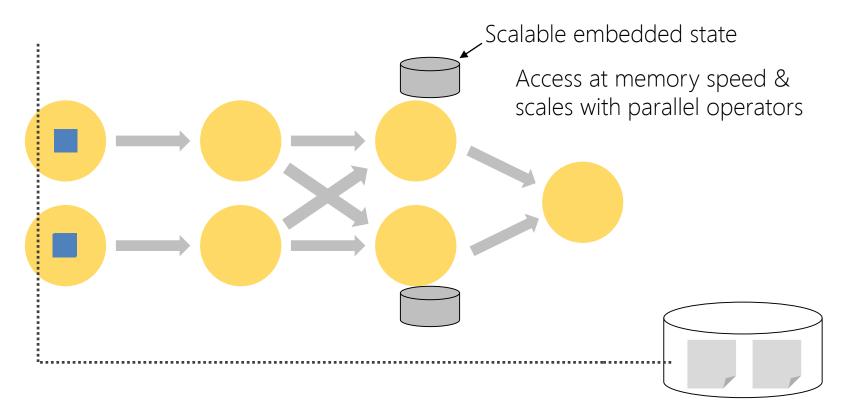
Event Sourcing + Memory Image



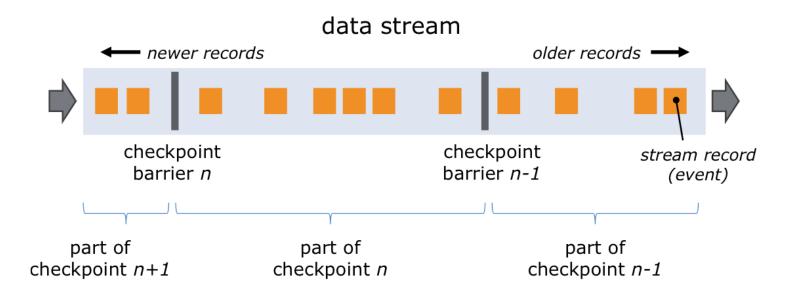
Event Sourcing + Memory Image

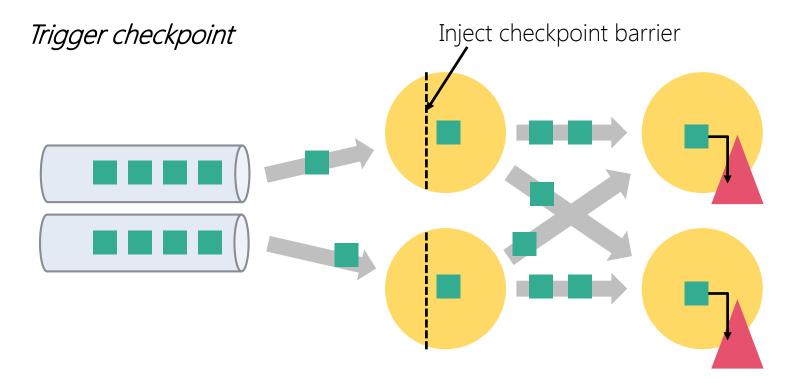
Recovery: Restore snapshot and replay events since snapshot

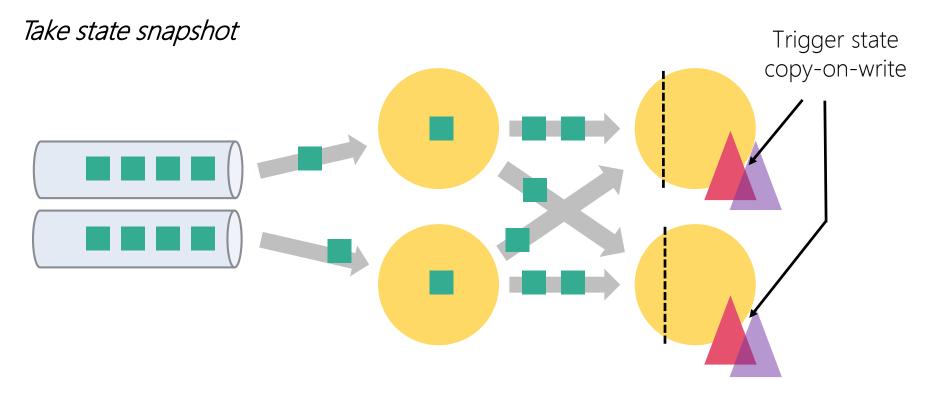


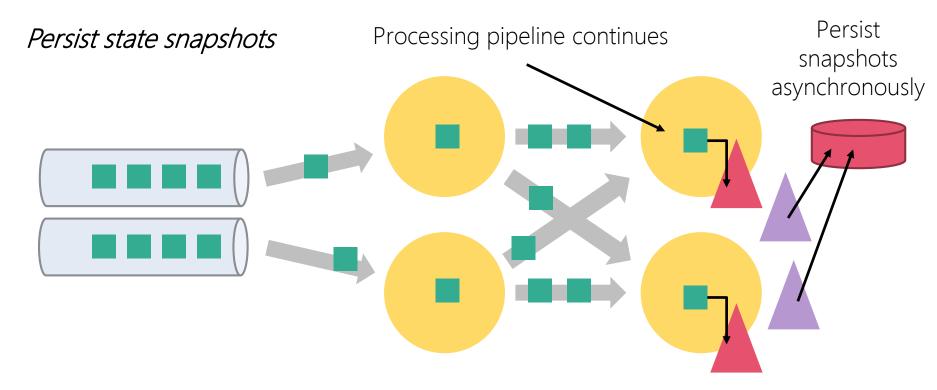


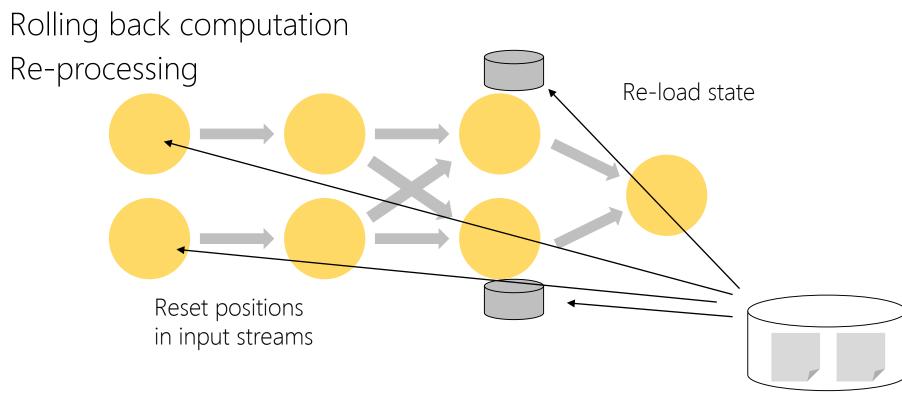
Checkpoint Barriers

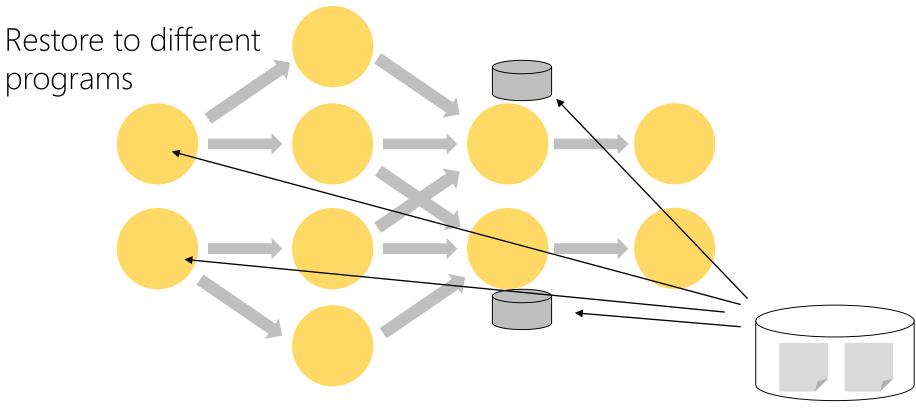












Checkpoints and Savepoints in Apache Flink

What to optimize for?

Fast snapshots

Flexible Operations on Snapshots

Checkpoint

Savepoint

Savepoints: Opt. for Operability

- Self contained: No references to other checkpoints
- Canonical format: Switch between state structures
- Efficiently re-scalable: Indexed by key group
- Future: More self-describing serialization format for to archiving / versioning (like Avro, Thrift, etc.)

Checkpoints: Opt. for Efficiency

Often incremental:

- Snapshot only diff from last snapshot
- Reference older snapshots, compaction over time
- Format specific to state backend:
 - No extra copied or re-encoding
 - Not possible to switch to another state backend between checkpoints
- Compact serialization: Optimized for speed/space, not long term archival and evolution
- Key goups not indexed: Re-distribution may be more expensive

What else are snapshots / checkpoints good for?

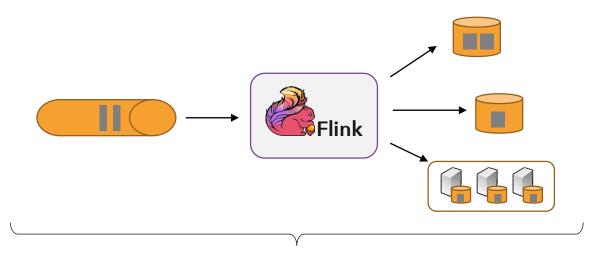
What users built on checkpoints

- Upgrades and Rollbacks
- Cross Datacenter Failover
- State Archiving
- State Bootstrapping
- Application Migration
- Spot Instance Region Arbitrage
- A/B testing

Distributed Snapshots and side effects

Transaction coordination for side fx

Snapshots may include side effects



One snapshot can transactionally move data between different systems

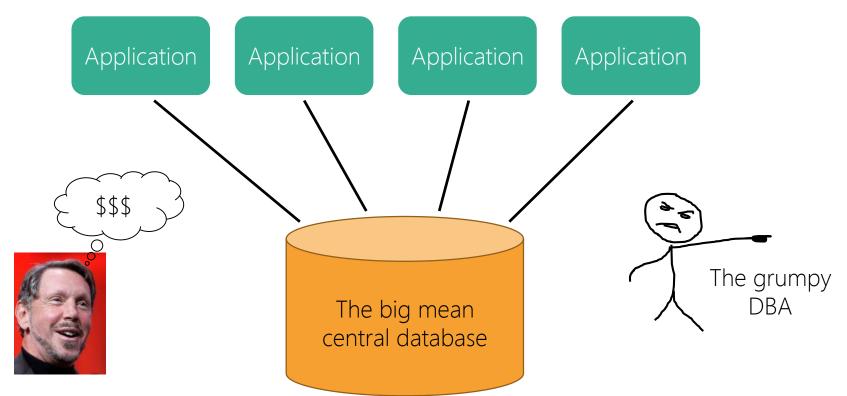
Transaction coordination for side fx

- Similar to a distributed 2-phase commit
- Coordinated by asynchronous checkpoints, no voting delays
- Basic algorithm:
 - Between checkpoints: Produce into transaction or Write Ahead Log
 - On operator snapshot: Flush local transaction *(vote-to-commit)*
 - On checkpoint complete: Commit transactions *(commit)*
 - On recovery: check and commit any pending transactions

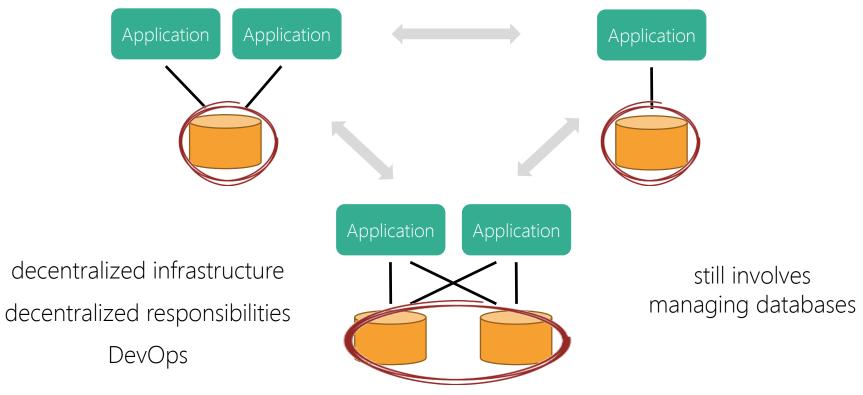
Distributed Snapshots and Application Architectures

(A Philosophical Monologue)

Good old centralized architecture



Stateful Stream Proc. & Applications



Stateless Application Containers

State management is nasty, let's pretend we don't have to do it

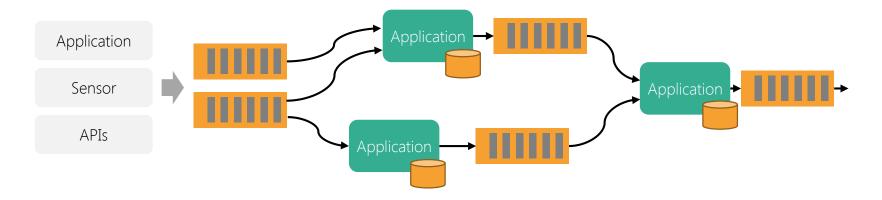
Stateless Application Containers

Broccoli (state management) is nasty, let's pretend we don't have to eat do it

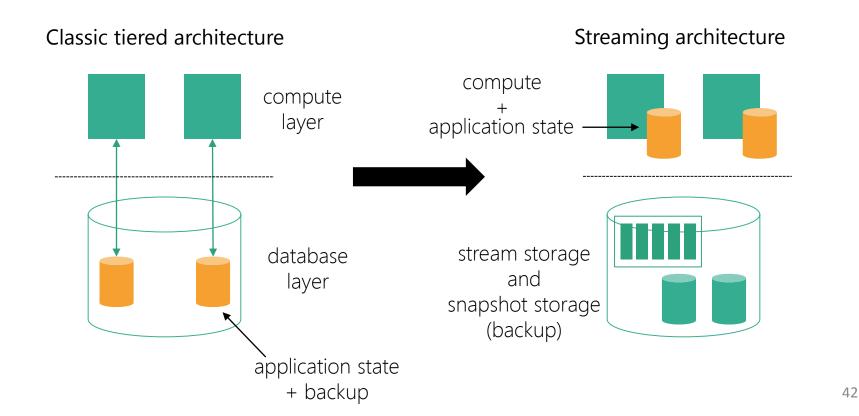
> Kudos to Kiki Carter for the Broccoli Metaphor

Stateful Stream Proc. to the rescue

very simple: state is just part of the application



Compute, State, and Storage



Performance

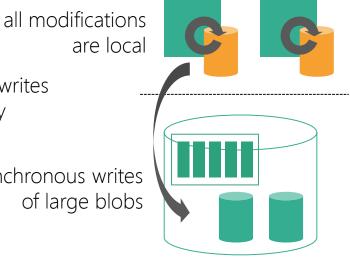
Classic tiered architecture

Streaming architecture

asynchronous writes of large blobs

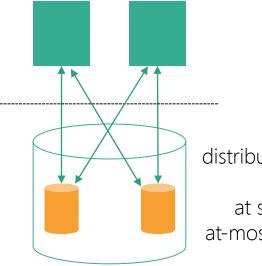
synchronous reads/writes

across tier boundary



Consistency

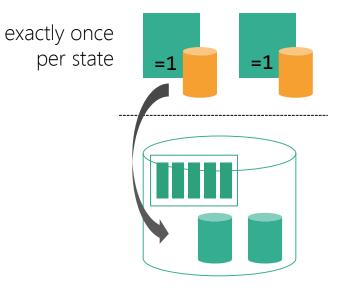
Classic tiered architecture



distributed transactions

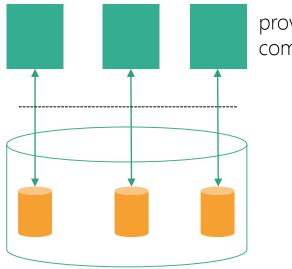
at scale typically at-most / at-least once

Streaming architecture



Scaling a Service

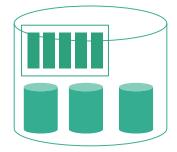
Classic tiered architecture



provision compute

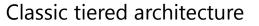
> provision compute and state together

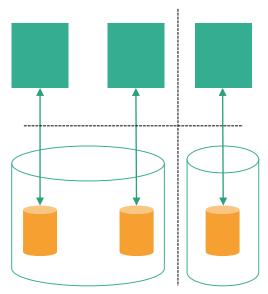
Streaming architecture



separately provision additional database capacity

Rolling out a new Service

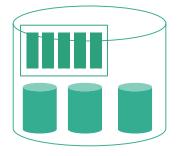




provision a new database (or add capacity to an existing one)

Streaming architecture

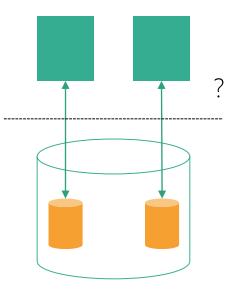
and state together



simply occupies some additional backup space

Time, Completeness, Out-of-order

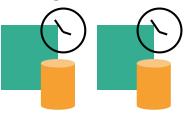
Classic tiered architecture

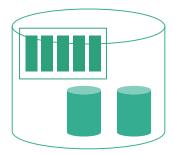


event time clocks define data completeness

> event time timers handle actions for out-of-order data

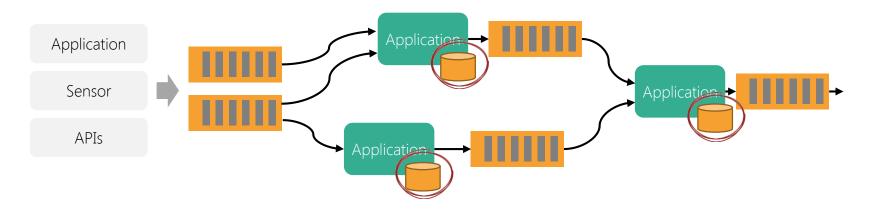
Streaming architecture





Stateful Stream Processing

very simple: state is just part of the application



The Challenges with that:

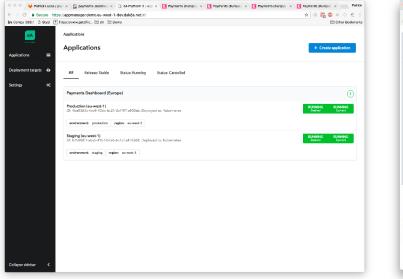
- Upgrades are stateful, need consistency
 - application evolution and bug fixes
- Migration of application state
 - cluster migration, A/B testing
- Re-processing and reinstatement
 - fix corrupt results, bootstrap new applications
- State evolution (schema evolution)

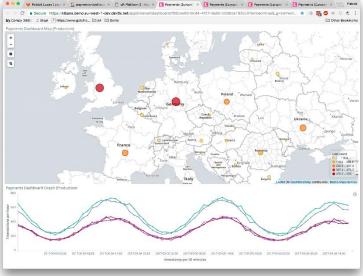
The answer

(my personal and obviously biased take)

Consistent Distributed Snapshots

Demo Time!





Payments Dashboard

Thank you very much 😊

(shameless plug)

Become a Speaker at Flink Forward San Francisco

Submit your talk

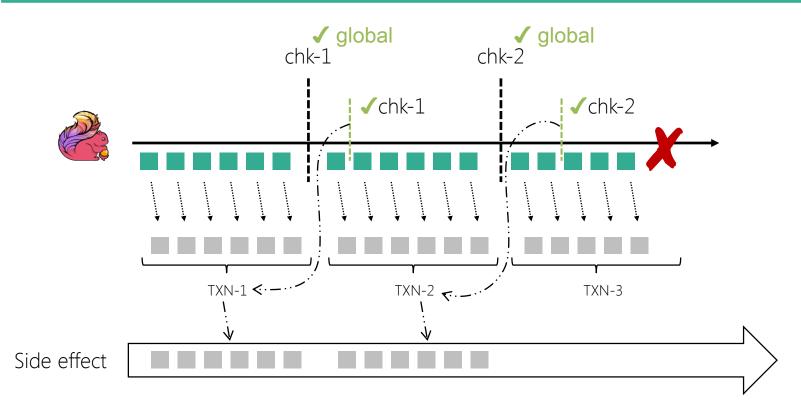
dataArtisans

We are hiring! data-artisans.com/careers

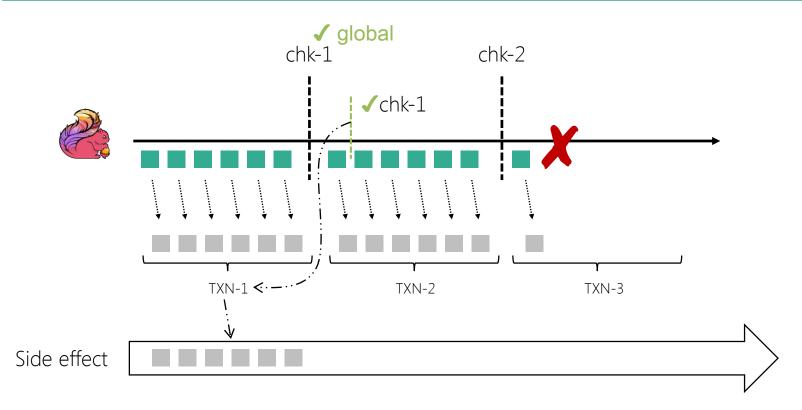
Appendix

Details about Snapshots and Transactional Side Effects

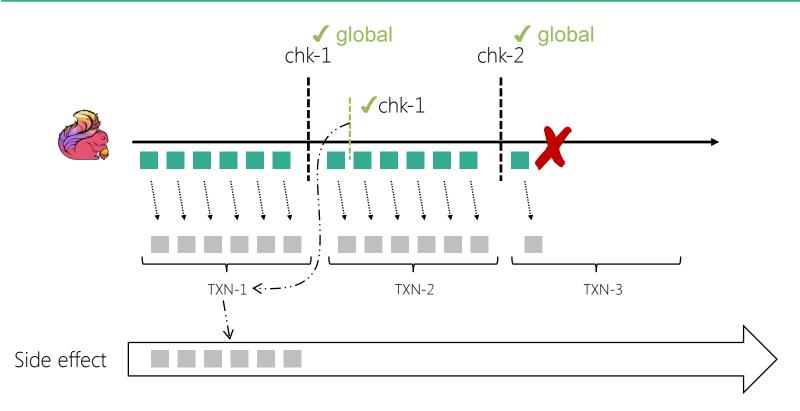
Exactly-once via Transactions



Transaction fails after local snapshot



Transaction fails before commit...



... commit on recovery

