
The Power of Snapshots

Stateful Stream Processing

with Apache Flink

Stephan Ewen

QCon San Francisco, 2017

1

2

Original creators of

Apache Flink®

dA Platform 2

Open Source Apache Flink +

dA Application Manager

3

Stream Processing

What changes faster? Data or Query?

4

Data changes slowly

compared to fast

changing queries

ad-hoc queries, data exploration,
ML training and

(hyper) parameter tuning

Batch Processing

Use Case

Data changes fast

application logic

is long-lived

continuous applications,
data pipelines, standing queries,

anomaly detection, ML evaluation, …

Stream Processing

Use Case

Batch Processing

5

Stream Processing

6

7

Stateful

Stream Processing

Moving State into the Processors

8

Application

External DBstate

Stateless

Stream Processor

Stateful

Stream Processor

Application

state

9

Apache Flink

Apache Flink in a Nutshell

10

Queries

Applications

Devices

etc.

Database

Stream

File / Object

Storage

Stateful computations over streams

real-time and historic

fast, scalable, fault tolerant, in-memory,

event time, large state, exactly-once

Historic

Data

Streams

Application

11

Event Streams State (Event) Time Snapshots

The Core Building Blocks

real-time and

hindsight

complex

business logic

consistency with

out-of-order data

and late data

forking /

versioning /

time-travel

Stateful Event & Stream Processing

12

Source

Transformation

Transformation

Sink

val lines: DataStream[String] = env.addSource(new FlinkKafkaConsumer09(…))

val events: DataStream[Event] = lines.map((line) => parse(line))

val stats: DataStream[Statistic] = stream
.keyBy("sensor")
.timeWindow(Time.seconds(5))
.sum(new MyAggregationFunction())

stats.addSink(new RollingSink(path))

Streaming
Dataflow

Source Transform Window

(state read/write)
Sink

Stateful Event & Stream Processing

13

Scalable embedded state

Access at memory speed &

scales with parallel operators

Event time and Processing Time

14

Event Producer Message Queue
Flink

Data Source

Flink

Window Operator

partition 1

partition 2

Event
Time

Ingestion
Time

Processing
Time

Broker
Time

Event time, Watermarks, as in the Dataflow model

Powerful Abstractions

15

Process Function (events, state, time)

DataStream API (streams, windows)

Stream SQL / Tables (dynamic tables)

Stream- & Batch

Data Processing

High-level

Analytics API

Stateful Event-

Driven Applications

val stats = stream
.keyBy("sensor")
.timeWindow(Time.seconds(5))
.sum((a, b) -> a.add(b))

def processElement(event: MyEvent, ctx: Context, out: Collector[Result]) = {
// work with event and state
(event, state.value) match { … }

out.collect(…) // emit events
state.update(…) // modify state

// schedule a timer callback
ctx.timerService.registerEventTimeTimer(event.timestamp + 500)

}

Layered abstractions to

navigate simple to complex use cases

16

Distributed Snapshots

Event Sourcing + Memory Image

17

event log

persists events

(temporarily)

event /

command

Process

main memory

update local

variables/structures

periodically snapshot

the memory

Event Sourcing + Memory Image

18

Recovery: Restore snapshot and replay events

since snapshot

event log

persists events

(temporarily)
Process

Consistent Distributed Snapshots

19

Scalable embedded state

Access at memory speed &

scales with parallel operators

Checkpoint Barriers

20

Consistent Distributed Snapshots

21

Trigger checkpoint Inject checkpoint barrier

Consistent Distributed Snapshots

22

Take state snapshot Trigger state

copy-on-write

Consistent Distributed Snapshots

23

Persist state snapshots Persist

snapshots

asynchronously

Processing pipeline continues

Consistent Distributed Snapshots

25

Re-load state

Reset positions

in input streams

Rolling back computation

Re-processing

Consistent Distributed Snapshots

26

Restore to different

programs

27

Checkpoints and Savepoints

in Apache Flink

Speed or Operability?

28

Fast snapshots

Checkpoint

Flexible

Operations on

Snapshots

Savepoint

What to optimize for?

Savepoints: Opt. for Operability

 Self contained: No references to other checkpoints

 Canonical format: Switch between state structures

 Efficiently re-scalable: Indexed by key group

 Future: More self-describing serialization format for to

archiving / versioning (like Avro, Thrift, etc.)

29

Checkpoints: Opt. for Efficiency

 Often incremental:

• Snapshot only diff from last snapshot

• Reference older snapshots, compaction over time

 Format specific to state backend:

• No extra copied or re-encoding

• Not possible to switch to another state backend between checkpoints

 Compact serialization: Optimized for speed/space, not long term

archival and evolution

 Key goups not indexed: Re-distribution may be more expensive

30

31

What else are snapshots /

checkpoints good for?

What users built on checkpoints

 Upgrades and Rollbacks

 Cross Datacenter Failover

 State Archiving

 State Bootstrapping

 Application Migration

 Spot Instance Region Arbitrage

 A/B testing

 …

32

33

Distributed Snapshots

and side effects

Transaction coordination for side fx

34

One snapshot can transactionally move

data between different systems

Snapshots may include side effects

Transaction coordination for side fx

 Similar to a distributed 2-phase commit

 Coordinated by asynchronous checkpoints, no voting delays

 Basic algorithm:

• Between checkpoints: Produce into transaction or Write Ahead Log

• On operator snapshot: Flush local transaction (vote-to-commit)

• On checkpoint complete: Commit transactions (commit)

• On recovery: check and commit any pending transactions

35

36

Distributed Snapshots

and Application Architectures

(A Philosophical Monologue)

Good old centralized architecture

37

The big mean

central database

$$$

The grumpy

DBA

Application Application Application Application

Stateful Stream Proc. & Applications

38

Application Application Application

Application Application

decentralized infrastructure

DevOps

decentralized responsibilities

still involves

managing databases

Stateless Application Containers

39

State management

is nasty, let's pretend we don't

have to do it

Stateless Application Containers

40

Kudos to Kiki Carter

for the Broccoli

Metaphor

Broccoli (state management)

is nasty, let's pretend we don't

have to eat do it

Stateful Stream Proc. to the rescue

41

Application

Sensor

APIs
Application

Application

Application

very simple: state is just part

of the application

Compute, State, and Storage

42

Classic tiered architecture Streaming architecture

database

layer

compute

layer

application state

+ backup

compute

+

stream storage

and

snapshot storage

(backup)

application state

Performance

43

synchronous reads/writes

across tier boundary

asynchronous writes

of large blobs

all modifications

are local

Classic tiered architecture Streaming architecture

Consistency

44

distributed transactions

at scale typically

at-most / at-least once

exactly once

per state =1 =1

Classic tiered architecture Streaming architecture

Scaling a Service

45

separately provision additional

database capacity

provision compute

and state together

Classic tiered architecture Streaming architecture

provision

compute

Rolling out a new Service

46

provision a new database

(or add capacity to an existing one)
simply occupies some

additional backup space

Classic tiered architecture Streaming architecture

provision compute

and state together

Time, Completeness, Out-of-order

47

?

event time clocks

define data completeness

event time timers

handle actions for

out-of-order data

Classic tiered architecture Streaming architecture

Stateful Stream Processing

48

Application

Sensor

APIs
Application

Application

Application

very simple: state is just part

of the application

The Challenges with that:

 Upgrades are stateful, need consistency

• application evolution and bug fixes

 Migration of application state

• cluster migration, A/B testing

 Re-processing and reinstatement

• fix corrupt results, bootstrap new applications

 State evolution (schema evolution)

49

50

Consistent Distributed

Snapshots

The answer

(my personal and obviously biased take)

51

Payments Dashboard

Demo Time!

52

Thank you very much 
(shameless plug)

We are hiring!

data-artisans.com/careers

Appendix

54

55

Details about Snapshots

and Transactional

Side Effects

Exactly-once via Transactions

56

chk-1 chk-2

TXN-1

✔chk-1 ✔chk-2

TXN-2

✘

TXN-3

Side effect

✔ global ✔ global

Transaction fails after local snapshot

57

chk-1 chk-2

TXN-1

✔chk-1

TXN-2

✘

TXN-3

✔ global

Side effect

Transaction fails before commit…

58

chk-1 chk-2

TXN-1

✔chk-1

TXN-2

✘

TXN-3

✔ global ✔ global

Side effect

… commit on recovery

59

chk-2

TXN-2 TXN-3

✔ global

recover
TXN handle

chk-3

Side effect

