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Stream Processing



What changes faster? Data or Query?
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Data changes slowly

compared to fast

changing queries

ad-hoc queries, data exploration, 
ML training and

(hyper) parameter tuning

Batch Processing

Use Case

Data changes fast

application logic

is long-lived

continuous applications,
data pipelines, standing queries, 

anomaly detection, ML evaluation, …

Stream Processing

Use Case



Batch Processing
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Stream Processing
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Stateful

Stream Processing



Moving State into the Processors
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Application

External DBstate

Stateless

Stream Processor

Stateful

Stream Processor

Application

state
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Apache Flink



Apache Flink in a Nutshell
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Queries

Applications

Devices

etc.

Database

Stream

File / Object

Storage

Stateful computations over streams

real-time and historic

fast, scalable, fault tolerant, in-memory,

event time, large state, exactly-once

Historic

Data

Streams

Application
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Event Streams State (Event) Time Snapshots

The Core Building Blocks

real-time and

hindsight

complex

business logic

consistency with

out-of-order data

and late data

forking /

versioning /

time-travel



Stateful Event & Stream Processing
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Source

Transformation

Transformation

Sink

val lines: DataStream[String] = env.addSource(new FlinkKafkaConsumer09(…))

val events: DataStream[Event] = lines.map((line) => parse(line))

val stats: DataStream[Statistic] = stream
.keyBy("sensor")
.timeWindow(Time.seconds(5))
.sum(new MyAggregationFunction())

stats.addSink(new RollingSink(path))

Streaming
Dataflow

Source Transform Window

(state read/write)
Sink



Stateful Event & Stream Processing
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Scalable embedded state 

Access at memory speed &

scales with parallel operators



Event time and Processing Time

14

Event Producer Message Queue
Flink

Data Source

Flink

Window Operator

partition  1

partition  2

Event
Time

Ingestion
Time

Processing
Time

Broker
Time

Event time, Watermarks, as in the Dataflow model



Powerful Abstractions
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Process Function (events, state, time)

DataStream API (streams, windows)

Stream SQL / Tables (dynamic tables)

Stream- & Batch 

Data Processing

High-level

Analytics API

Stateful Event-

Driven Applications

val stats = stream
.keyBy("sensor")
.timeWindow(Time.seconds(5))
.sum((a, b) -> a.add(b))

def processElement(event: MyEvent, ctx: Context, out: Collector[Result]) = {
// work with event and state
(event, state.value) match { … }

out.collect(…) // emit events
state.update(…) // modify state

// schedule a timer callback
ctx.timerService.registerEventTimeTimer(event.timestamp + 500)

}

Layered abstractions to

navigate simple to complex use cases
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Distributed Snapshots



Event Sourcing + Memory Image

17

event log

persists events

(temporarily)

event /

command

Process

main memory

update local

variables/structures

periodically snapshot 

the memory



Event Sourcing + Memory Image
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Recovery: Restore snapshot and replay events 

since snapshot

event log

persists events

(temporarily)
Process



Consistent Distributed Snapshots
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Scalable embedded state 

Access at memory speed &

scales with parallel operators



Checkpoint Barriers
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Consistent Distributed Snapshots
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Trigger checkpoint Inject checkpoint barrier



Consistent Distributed Snapshots
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Take state snapshot Trigger state

copy-on-write



Consistent Distributed Snapshots
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Persist state snapshots Persist

snapshots

asynchronously

Processing pipeline continues



Consistent Distributed Snapshots
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Re-load state

Reset positions

in input streams

Rolling back computation

Re-processing



Consistent Distributed Snapshots
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Restore to different

programs
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Checkpoints and Savepoints

in Apache Flink



Speed or Operability?
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Fast snapshots

Checkpoint

Flexible

Operations on 

Snapshots

Savepoint

What to optimize for?



Savepoints: Opt. for Operability

 Self contained: No references to other checkpoints

 Canonical format: Switch between state structures

 Efficiently re-scalable: Indexed by key group

 Future: More self-describing serialization format for to 

archiving / versioning (like Avro, Thrift, etc.)
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Checkpoints: Opt. for Efficiency

 Often incremental:

• Snapshot only diff from last snapshot

• Reference older snapshots, compaction over time

 Format specific to state backend:

• No extra copied or re-encoding

• Not possible to switch to another state backend between checkpoints

 Compact serialization: Optimized for speed/space, not long term 

archival and evolution

 Key goups not indexed: Re-distribution may be more expensive
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What else are snapshots /

checkpoints good for?



What users built on checkpoints

 Upgrades and Rollbacks

 Cross Datacenter Failover

 State Archiving

 State Bootstrapping

 Application Migration

 Spot Instance Region Arbitrage

 A/B testing

 …
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Distributed Snapshots

and side effects



Transaction coordination for side fx
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One snapshot can transactionally move

data between different systems

Snapshots may include side effects



Transaction coordination for side fx

 Similar to a distributed 2-phase commit

 Coordinated by asynchronous checkpoints, no voting delays

 Basic algorithm:

• Between checkpoints: Produce into transaction or Write Ahead Log

• On operator snapshot: Flush local transaction (vote-to-commit)

• On checkpoint complete: Commit transactions (commit)

• On recovery: check and commit any pending transactions
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Distributed Snapshots

and Application Architectures

(A Philosophical Monologue)



Good old centralized architecture
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The big mean

central database

$$$

The grumpy

DBA

Application Application Application Application



Stateful Stream Proc. & Applications
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Application Application Application

Application Application

decentralized infrastructure

DevOps

decentralized responsibilities

still involves

managing databases



Stateless Application Containers
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State management

is nasty, let's pretend we don't

have to do it



Stateless Application Containers
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Kudos to Kiki Carter

for the Broccoli 

Metaphor

Broccoli (state management)

is nasty, let's pretend we don't

have to eat do it



Stateful Stream Proc. to the rescue
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Application

Sensor

APIs
Application

Application

Application

very simple: state is just part

of the application



Compute, State, and Storage
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Classic tiered architecture Streaming architecture

database

layer

compute

layer

application state

+ backup

compute

+

stream storage

and

snapshot storage

(backup)

application state



Performance
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synchronous reads/writes

across tier boundary

asynchronous writes

of large blobs

all modifications

are local

Classic tiered architecture Streaming architecture



Consistency
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distributed transactions

at scale typically

at-most / at-least once

exactly once

per state =1 =1

Classic tiered architecture Streaming architecture



Scaling a Service
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separately provision additional

database capacity

provision compute

and state together

Classic tiered architecture Streaming architecture

provision

compute



Rolling out a new Service
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provision a new database

(or add capacity to an existing one)
simply occupies some

additional backup space

Classic tiered architecture Streaming architecture

provision compute

and state together



Time, Completeness, Out-of-order
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?

event time clocks

define data completeness

event time timers

handle actions for

out-of-order data

Classic tiered architecture Streaming architecture



Stateful Stream Processing
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Application

Sensor

APIs
Application

Application

Application

very simple: state is just part

of the application



The Challenges with that:

 Upgrades are stateful, need consistency

• application evolution and bug fixes

 Migration of application state

• cluster migration, A/B testing

 Re-processing and reinstatement

• fix corrupt results, bootstrap new applications

 State evolution (schema evolution)
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Consistent Distributed

Snapshots

The answer

(my personal and obviously biased take)
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Payments Dashboard

Demo Time!
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Thank you very much 
(shameless plug)



We are hiring!

data-artisans.com/careers



Appendix
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Details about Snapshots

and Transactional

Side Effects



Exactly-once via Transactions
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chk-1 chk-2

TXN-1

✔chk-1 ✔chk-2

TXN-2

✘

TXN-3

Side effect

✔ global ✔ global



Transaction fails after local snapshot
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chk-1 chk-2

TXN-1

✔chk-1

TXN-2

✘

TXN-3

✔ global

Side effect



Transaction fails before commit…
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chk-1 chk-2

TXN-1

✔chk-1

TXN-2

✘

TXN-3

✔ global ✔ global

Side effect



… commit on recovery
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chk-2

TXN-2 TXN-3

✔ global

recover
TXN handle

chk-3

Side effect


