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Stream Processing



What changes faster? Data or Query? L.

Data changes slowly Data changes fast
compared to fast application logic
changing queries is long-lived

ad-hoc queries, data exploration, continuous applications,
ML training and data pipelines, standing queries,

(hyper) parameter tuning anomaly detection, ML evaluation, ...
Batch Processing Stream Processing

Use Case Use Case



Batch Processing

Application Database Queries &
Updates

Sensor
mn o I
o U U — .
Other Event Analytics
Distributed File System, SAN, ...
birth of the data storing data applications schedule
as streams of events at rest computation on the data



Stream Processing

Application Application == - _L
sensor [ a-
Application [E== - J

Other

birth of the data applications computing
as streams of events over event data streams



Stateful
Stream Processing



Moving State into the Processors

I [ ot | I B 11111 IR SN TTTTT
el G e

state External DB

Stateless Stateful
Stream Processor Stream Processor



Apache Flink



Apache Flink in a Nutshell

Stateful computations over streams
real-time and historic
fast, scalable, fault tolerant, in-memory,
event time, large state, exactly-once
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%%% File / Object
Storage
10




Event Streams

real-time and
hindsight

The Core Building Blocks

State

complex
business logic

(Event) Time

consistency with
out-of-order data
and late data

Snapshots

forking /
versioning /
time-travel
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Stateful Event & Stream Processing L.

val lines: DataStream[String]

env.addSource(new FlinkKafkaConsumer@9(..)) i}- Source

val events: DataStream[Event] = lines.map((line) => parse(line)) }_ Transformation

val stats: DataStream[Statistic] = stream
.keyBy("sensor"
.timeWindow(Time.seconds(5)) Transformation
.sum(new MyAggregationFunction())

stats.addSink(new RollingSink(path))

@ }- Sink

__ Streaming
Dataflow

Window | Sink
(state read/write)

Source Transform




Stateful Event & Stream Processing

Scalable embedded state

@ Access at memory speed &
scales with parallel operators
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Event time and Processing Time

Flink Flink
Event Producer Message Queue Data Source Window Operator
—1
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Ingestion c Processing -7
Time

Time _~#

Fvent time, Watermarks, as in the Dataflow model
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Powerful Abstractions L.

Layered abstractions to
na\/igate Simple to Comp|e)( use cases SELECT room, TUMBLE_END(rowt-in;e, INTERVAL '1' HOUR), AVG(temp)

FROM sensors
GROUP BY TUMBLE(rowtime, INTERVAL '1' HOUR), room

High-level
Analytics API

.keyBy("sensor")
.timeWindow(Time.seconds(5))
.sum((a, b) -> a.add(b))

Stream- & Batch
Data Processing

_ val stats = stream

Stateful Event- Process Function (events, state, time)
Driven Applications

def processElement(event: MyEvent, ctx: Context, out: Collector[Result]) = {
// work with event and state
(event, state.value) match { .. }

out.collect(..) // emit events
state.update(..) // modify state

// schedule a timer callback
ctx.timerService.registerEventTimeTimer(event.timestamp + 500) ]-5




Distributed Snapshots



Event Sourcing + Memory Image

periodically snapshot
the memory

main memaory

L[ = |
event / N A
command )
] ( event log () [ R Update local
variables/structures

persists events
(temporarily)

Process
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Event Sourcing + Memory Image

Recovery: Restore snapshot and replay events
since snapshot

Ll = |

B0 eentiog (WmEmE

persists events
(temporarily)

Process
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Consistent Distributed Snapshots

Scalable embedded state

@ Access at memory speed &
scales with parallel operators



Checkpoint Barriers

data stream

<+ newer records older records =
checkpoint checkpoint stream record
barrier n barrier n-1 (event)
l J | J J
Y f f
part of part of part of

checkpoint n+1 checkpoint n checkpoint n-1
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Consistent Distributed Snapshots

Irigger checkpoint Inject checkpoint barrier
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Consistent Distributed Snapshots

Jake state snapshot Trigger state
Ccopy-on-write

T T TR : :.
EEEE() gy -
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Consistent Distributed Snapshots

Persist state snapshots Processing pipeline continues Persist
snapshots

\ asynchronously
- ] H B
IIIIO
]

EEEE() gy -
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Consistent Distributed Snapshots

Rolling back computation
Re-processing @

Re-load state

in input streams

ReW @
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Consistent Distributed Snapshots

Restore to different

orograms —]

k@
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Checkpoints and Savepoints
in Apache Flink




Speed or Operability?

What to optimize for?

Flexible
Fast snapshots Operations on
Snapshots

Checkpoint Savepoint

28



Savepoints: Opt. for Operability

= Self contained: No references to other checkpoints
= Canonical format: Switch between state structures
= Efficiently re-scalable: Indexed by key group

= Future: More self-describing serialization format for to
archiving / versioning (like Avro, Thrift, etc.)

29



Checkpoints: Opt. for Efficiency g

Often incremental:
* Snapshot only diff from last snapshot
* Reference older snapshots, compaction over time

= Format specific to state backend:
* No extra copied or re-encoding
+ Not possible to switch to another state backend between checkpoints

= Compact serialization: Optimized for speed/space, not long term
archival and evolution

= Key goups not indexed: Re-distribution may be more expensive
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What else are snapshots /
checkpoints good for?



What users built on checkpoints

= Upgrades and Rollbacks

= (Cross Datacenter Failover

= State Archiving

= State Bootstrapping

= Application Migration

= Spot Instance Region Arbitrage
= A/B testing
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Transaction coordination for side fx

Snapshots may include side effects

P

- @.. =
LR

\ J
Y

One snapshot can transactionally move
data between different systems
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Transaction coordination for side fx L.

= Similar to a distributed 2-phase commit
= Coordinated by asynchronous checkpoints, no voting delays

= Basic algorithm:
+ Between checkpoints: Produce into transaction or Write Ahead Log
« On operator snapshot: Flush local transaction (vote-to-cornmit)
* On checkpoint complete: Commit transactions (commit)
* On recovery: check and commit any pending transactions
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Distributed Snapshots
and Application Architectures

(A Philosophical Monologue)



Good old centralized architecture L.

Application Application Application

Application

The grumpy
DBA
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Stateful Stream Proc. & Applications

Application | Application Application

©

still involves
managing databases

Application Application

decentralized infrastructure
decentralized responsibilities

DevOps
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Stateless Application Containers

State management
is nasty, let's pretend we don't
have to do it
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Stateless Application Containers

Broccoli {state-rmanagerment)

is nasty, let's pretend we don't
have to eat e it

Kudos to Kiki Carter
for the Broccoli
Metaphor
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Stateful Stream Proc. to the rescue

very simple: state is just part
of the application

Application

Sensor Application

»

APIs
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Compute, State, and Storage

Classic tiered architecture Streaming architecture

compute
compute N
layer application state

)

N I
database stream storage “I“
. . layer and

snapshot storage .
\—)\ (backup) ~_  —

application state
+ backup 42




Performance

Classic tiered architecture Streaming architecture

T

all modifications
are local

synchronous reads/writes
| across tier boundary

A
asynchronous writes “I“
. of large blobs . .

~N ~_
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Consistency

Classic tiered architecture Streaming architecture

exactly once
per state

NV

distributed transactions “I“/
. . at scale typically
at-most / at-least once

~N ~_
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Scaling a Service L.

Classic tiered architecture Streaming architecture

T A A I. I. l.

provision
compute

provision compute

I and state together
[

p/

separately provision additional
database capacity 45




Rolling out a new Service

Classic tiered architecture

A

T
Pl

v

provision a new database
(or add capacity to an existing one)

Streaming architecture

provision compute
and state together

\IIIII/
(11

simply occupies some
additional backup space 46




Time, Completeness, Out-of-order

Classic tiered architecture Streaming architecture
event time clocks
define data completeness
T T ? event time timers
handle actions for

out-of-order data ~ —
-

~N ~_
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Stateful Stream Processing

very simple: state is just part
of the application

Application

Sensor

»

Applicatios-,

APIs
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The Challenges with that:

= Upgrades are stateful, need consistency
- application evolution and bug fixes

= Migration of application state
* cluster migration, A/B testing

= Re-processing and reinstatement
* fix corrupt results, bootstrap new applications

= State evolution (schema evolution)
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The answer

(my personal and obviously biased take)

Consistent Distributed
Snapshots
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o
Thank you very much ©

(shameless plug)

The Apache Flink® Conference

FLINK™ san Francisco |
FORWARD® April9-10,2018 =

~

Become a Speaker at Flink Forward SanFrancisco

v

Submit your talk \ 1
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Appendix



Details about Snapshots

and Transactional
Side Effects



Exactly-once via Transactions

v global v global
chk-1 chk-2

i v chk-1 i v chk-2
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Transaction fails after local snapshot

chk-1 chk-2
1 1
1 1
: chk-1 :
I I
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v
Side effect
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Transaction fails before commit...

chk-1 chk-2
1 1
1 1
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Side effect
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.. commit on recovery

chk-2 chk-3
recover i i
& TXN hand/ei i
EEEEEN!

V
Side effect
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