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GNU

GNU’s Not Unix Project

sunearn 1983
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CERN DD/OC Tim Berners-Lee, CERN/DD

Information Management: A Proposal March 1989

- Information Management: A Proposal

Abstract

This proposal concerns the management of general information about accelerators and cxperiments at
CERN. Tt discusses the problems of loss of information about complex evolving systems and derives a
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Bell Labs: A Hive of Invention

A selection of its most important innovations in the decades leading up to the breakup of its parent company, AT&T, in 1884, and how they helped lead to some of the latest technologies.

1940s 1950s 1951 Direct-distance dialing
Mo operator necessary for
long-distance calls.
) First long-distance 1947 The transistor
computing Remote A landmarks invention, ;
aration of a computer, Replaced vacuum tubes N llﬁg‘;ma;:‘f:; IFE')"S';;:;DJ
3ell Labs in New York, and mechanical relays,; ~ practical level of elegtricity.

by a teletypewriter in
Mew Hampshire,

transformed electronics.

46 First commercial
wbile phone service

mest, three subscrit-

5 per city could make
ills at one time; each
er's phone apparatus

welghed almost BO

1948 Information theory
Calculates maximum
capacity for any commu-
nications system and
shows how Lo send
digital messages
essentially error-free,

\

1956 First transatlantic |

1960s 1962 Digital transmission,
switching First digital transmis-

sion of multiple voice signals.

1960-62 First communications satellites

1970s and '80s

1969-72 UNIX operating system

Echo is first to reflect a voice signal from

and C programming language

coast to coast; Telstar | shows an orbiting

relay can amplify and resend multiple

varied computing systems, and

phone and TV transmissicns.

the Internet, practical.

telephone cable

Designed and implemented
by Bell Labs; could carry up
0 36 simultaneous calls.

1957 Digitized music First

computer-synthesized music,

pounds, Enabled data compres-
sion and cryptography.
1947 Cellular
tlephone technology
| Labs paper was the The furray Hill,
propose a network of | N, bulldings
interiocking cell sites | apened in 1941,

7 users as they move,
3 their calls from one
12 o another without
oping the connaction.

1958 The laser “Light Amplification by Stimulated
Emission of Radiation” was described in a Bell
Labs paper. It is crucial for communications,
surgical and DVD technologies.

demonstrations of digitized and e

Bell Labs coened

1962 Paging system Bellboy pager is |

1876 Fiber-optic network
The first test of Bell Labs'

introduced at the Seattle World's Fair,

1963 Touch-tone telephone |

experimental lightwave
communication system
begins in Atlanta, Information

Enables voice mail and call centers, |

is carried by pulses of light,

1965 Evidence of the Big Bang
Discovery of cosmic background
radiation from beyond the Milky Way.

1969 Charge-coupled device
A solid-state chip that transforms
patterns of light into information. Vital
to digital cameras, high-definition
television, medical endoscopes
and video conferencing.

1978 First commercial cellular network

1979 Digital signal processor
An essential component of cellphones,
modems, PCs and video game systems.

1980 Digital cellular phone
Better sound quality, greater
channel capacity, lower cost,

Makes large-scale netwarking of |

Installed by Bell Labs in Chicage. =

=

1982 Fractional quantum hall
effect Discovery of a new
state of subatomic matter that
wins the Nobel Prize,

in Hobmdal, ML,
in 1562, It was
vacated in 2007,

LEFT AND CENTER PHOTOS COURTESY OF ALCATEL-LUCENT USA INC. AND THE AT&T ARCHIVES ANI
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no unused imports
too opinionated

too verbose

no ternary operator
no macros or
templates

too simple / lack of syntactic sugar
no generics

bad dependency management
stuck in 70/80's

error handling

https://github.com/ksimka/qo-is-not-good
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“Go programming language was conceived as an answer to
some of the problems we were seeing developing software
Infrastructure at Google. The computing landscape today is
almost unrelated to the environment in which the languages
being used, mostly C++, Java, and Python, had been created.
The problems introduced by multicore processors,
networked systems, massive computation clusters, and
the web programming model were being worked around
rather than addressed head-on.
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Moreover, the scale has changed: today’s server programs
comprise tens of millions of lines of code, are worked on by
hundreds or even thousands of programmers, and are
updated literally every day. To make matters worse, build time
have stretched to many minutes, even hours, even
languages,on large compilation clusters,”
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web programming model
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Go’'s 21st Century Characteristics

Concurrency
Distributed Systems
Garbage Collection
Memory Locality
Readability
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Events, Threads and Goroutines

Nginx - event loop plus state machine model
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Nginx - event loop plus state machine model
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Nginx - event loop plus state machine model
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NGINX EVENT LOOP

WAIT FOR EVENTS
ON CONNECTIONS

RECEIVE A QUEUE
OF NEW EVENTS

PROCESS THE EVENTS
QUEUE IN CYCLE
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Syscall impact on user-mode IPC
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Java Go

No value types Structs
Everything Allocated True Value types
Can't return multiple values
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When the three of us [Ken Thompson, Rob Pike, and Robert
Griesemer] got started, it was pure research. The three of us got
together and decided that we hated C++. [laughter] ... [Returning
to Go,] we started off with the idea that all three of us had to be
talked into every feature in the language, so there was no
extraneous garbage put into the language for any reason.



https://en.wikipedia.org/wiki/Rob_Pike
https://en.wikipedia.org/w/index.php?title=Robert_Griesemer&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Robert_Griesemer&action=edit&redlink=1
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Memory Locality

e UTF-16

No value types
Everything Allocated

Can't return multiple values

£l UTF-8

Structs

True Value types
Compact object layout
No object headers
Lazy initialization of
collections
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Memory Locality (conclusion)

® (o gives programmers the tools to talk about memory
efficiently if they need it.

® Flexible

e Memory management (not an all-or-nothing like in C++ or
Rust)






Readability

“ Debugging is twice as hard as writing the code in the first
place. Therefore, if you write the code as cleverly as possible,
you are, by definition, not smart enough to debug it. "—Brian
Kernighan
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Readability

simplicity

“‘simple is better”

“you're trying to
commodify programming
and create a situation
where our bosses can
replace us at will”



“You're not paid to program, you're not even paid to maintain
someone else’s program, you're paid to deliver solutions to the
business.”

- Dave Cheney
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Readability

Programs which cannot be maintained will be rewritten

“If you can’t be replaced, you cannot be promoted”
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Software Engineering

Software Engineering vs Programming
Software Engineering = Programming integrated over time.

Engineering is what happens when things need to live longer and influence of
time starts creeping in. -Titus Winters

All this complexity is fundamentally a different flavor than programming.
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Software Engineering

focus on sustaining engineering (readability)
continuance of many different engineers over a long period of time
clear module boundaries

keeping import dependencies between packages linear, thus keeping compile
times down.



Simplicity and the Greater Good
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“Simplicity i1s a great virtue but it requires hard work to achieve it
and education to appreciate it. And to make matters worse:
complexity sells better.”

— Edsger W. Dijkstra
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The Future?
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The Future?

The problems we have today were not there 20
years ago, nor will be problems we face 20 years

from now.
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The Future?

...It may surprise you
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Thank you!

Carmen Andoh @carmatrocity
QCon San Francisco

21st Century Languages Track
November 2017



