The Why of Go

21st Century Programming Languages Track, Qcon SF

Carmen Andoh

Thank you, fellow time travelers from the Future

Dave Cheney
Alan Donovan
Steve Francia
Jerome Pettazoni

BaCk tO 1983 «=s (from 1985, but whetev, 80s rule)

FANTASY. POWER. DESTINY.

BRI W . Rty bo B e e

’ Lﬁrﬁ 4

i L o

% b

v d -

..,W !.E _rr.l,- .Ph ._.. LA

e h,._,,_,,.F ,.Py ..F,. ..f hr. e o) ...- N 4 a ‘:..,.

i e 2 2 SEIX B it G

PSsiosh o = Al i .
3 4 . N, LA .u,‘r.”n.,rﬂé..:

.31;\‘..“ !J#:q!\. .ﬂlﬂlﬂa&

w... 4 ﬁ & ._ i . ,. ﬁ I % ‘
Vs / ,.,i V" v % 1
\:a;‘n_ ®_wp _,w ‘-i |

v gy
S
N EN

...— __ [/

| §

| sEooglescom/datacentel

Googles

” Lougle

G@v |E_“|| Ho e lougle com ﬁ§| |E:E |;| Ib | “P

File Edit View Favorites Tools Help

¢ Favorites | s @) Free Hotmal 8 veh Slie Gallery = 8 Siqgected Sres =
& Lougle] Py - B) [0 de v Page~ Ssfety~ Took - 0*

Web Images “ideos Maps Mews Shopping Lmail more v iLougle | Search setti gglslgnl

fg v WA v

13586
h
1352
1350
L3
1362
L3
1964
L
19885
T
1362
L3
1370
1]
1572

|
1574
1576
¥
1578
1580

v
1322

You
are
here

Genealogy of Programming Languages o=
1956-1983

Lisp

Scheme

ML

>

’
15984

SML

Commeon Lisp

Algol 60

Srmalltalk

5 Ika&R]l

Smalltalk 80

T+

COBOL
pLIT
PEE:CEI| Pralog
Fortran 77
Ada 83

1524 SML Cormmon Lisp G

1926 Ca;‘rﬂ _ | Eii:'lfe| F’ér’|

1988 Tl

1550 ! P;:I:I:mn Fortr;m =14]
15‘52

1554 , Ja;.fa - JavaScript ‘F;uplc:;y F’e;l 5

1956 OC:.ar"rﬂ

1598 Scherme RSRS Haskell o8 C++ (1s0)

2000 . C&’;' =L -F’-}fthﬂn 2,‘(} Genealogy Of
Programming

2004 C# 2.0 Java =

Gin . Languages
: | — | 1956-2015

2010 Rust Haskell 2010
201z

2014 " Swift * Java 8

=
= =
eowp v

()
=
o

[
2
1

T LIS N EE [R O B T

1975 1980 1985 1990 1995 2000 2005 2010 2015

Original data collected and plotled by M. Horowitz, F. Labonte, O. Shacham, K. Oluketun, L. Hammond and C. Ballen
Dotted line extrapolations by C. Moore

Unix

Operating System

Original Valws

Fror,rammin,g B L. fir;ha.m, E. L. Rivest
Technigues Editors

Communicating
Sequential Processes
C.AR. Hoare

The Queen’s University
Belfast, Morthern Ireland

SECOND EDITION

THE

This paper suggests that inpot and outpul are hasic
primitives of programming and that parallel
composition of communicating sequential processes ks a
Tundamental program structuring method. When
combined with a development of Dijksira’s guarded
command, these concepis are surprisingly versatile.
Their use is illustrated by sample solutions of a variety
of familiar programming exercises.

Key Words and Phrases: programming,
programming languages, programming primitives,

program structures, parallel programming, concurrency,

Input, output, guarded commands, nondeterminacy,
coroutines, procedures, multiple entries, multiple exits,
clusses, datn representutions, recursion, comdithonal
critical reghoms, manitors, iterative arrays

CR Categorbes: 4.20, 4,22, 4.32

‘/ﬁiﬂg{\-

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

BRENTICE HALL SOFTWARE SERIES

1524 SML Cormmon Lisp G

1926 Ca;‘rﬂ _ | Eii:'lfe| F’ér’|

1988 Tl

1550 ! P;:I:I:mn Fortr;m =14]
15‘52

1554 , Ja;.fa - JavaScript ‘F;uplc:;y F’e;l 5

1956 OC:.ar"rﬂ

1598 Scherme RSRS Haskell o8 C++ (1s0)

2000 . C&’;' =L -F’-}fthﬂn 2,‘(} Genealogy Of
Programming

2004 C# 2.0 Java =

Gin . Languages
: | — | 1956-2015

2010 Rust Haskell 2010
201z

2014 " Swift * Java 8

"What's that”™ snapped the King
And he locked dowm the stock
Ard] be saw al the hattom, & lurtle named Mack

CLOUD AND VIRTUALIZATION

PROTOCOLS

IMAP/POP3 P CLOUD COMPUTING P CLONING E STATISTICS

o - o BRI o .. U C,I _ @ [l § PEE—
- Stack E : Clonezilla : : T c m
- QuALcOMM : 5 2 P : Webalizer
. OpenNebula F .é. ﬂ

m o
Flynn §88
X%

HTTP é(.‘f-.")'.l(ibtdt}(‘EZ-Archlpal "-‘
Appicale

I NGIMX L) B | i oo coue | oo ['S
/ | @ cADDY | PROXY | 9% P e & _ Nagios' @

cherokee traefik EZZZZZZZZZZZZZZZZHIZZZZZZZZZZZZZZZ:ZZ; : —— w S Haux Dot ERSNENV :
e o i CLOUD ORCHESTRATION B 3 :
: ‘ " RINDECK | i

VAVAY

e RSN MONITORING

Iog 10 #:feLoomx —4-3

sensu ;

—

__ P

E IMAP/POP3
L sovecor B

E HA
L, o=

cherokee traefik

- r
WSGl ImeZesnss |\ corre

} NGIMX “i} A

PRIOYY :

CLOUD AND VIRTUALIZATION

CLOUD COMPUTING

- e O

B OpenNebula
ST Flynn
istack ’%;An:rupal 'l‘
Asptzoie

3 OPENSHIFT

AVAVa
WAy

LAA AT

CLOUD ORCHESTRATION

‘ Overcast ZRUNDECK

[¥ saLTsTACK >bosh

N

Obnam I =

5 ﬂgmdm{d L rsnapshot :
«

. SNEBU E_

SUPPORT SOFTWARE

E STATISTICS C E CONTROL PAMELS
i PIWIK | | oxmmmm .

: “‘;?;_._. M

s " i
: MONITORING :

.

n&
3 @ISP
L e Qe
: @
VESTA

Easy

log.io oo Lo

sensu :

- \.ﬁ: : POWERDMS LI

LAMAR

Tbackup LSRG

alerta

| RN icinca &

'rzy/ Cabot omD

Linux Dash

3 "'“",“
:G P

© Froxior £3 Eosy-lWi
O Vrucimin
e F RN
£

Wl postin o
duplicity kvmBackup

RIEMANN

Attic =

LibreNMS

Monitorix

i Selena - Zentss :

WEBMAILS

q'mallpnu ElTAQEL'
£

o fHCOCKPIT

EDITORS

ovim D {coder}é
ﬂ' " |
- [

jotgit xS

'-,. Sublime Text 2

Oml

REPOSITORIES

Dotdeb ¥ ERero

e Ty

[e

e BT | pmmae0 @ pmm T
- -
o s s [T e
-
o poee [R | lople A= oD
wenx Gy IR s N e [EEIRE R -5 T
S omm e 19 o B T oo gl
chakes 122 ik -] i Enene LB e

WA e

o i M |y &
B [

et LU e p——
plcy e

¥ hmh
- ol soos [| e OE 2
e PN e s

i
« mm ¢ @O
a
.

.
S 1 @

=
ORGSR -afe Fusz

Tt -I I - o —
P WAL -
a -
i ® —
v
e - P \9
. e

- T
getod B3

GNU

GNU’s Not Unix Project

sunearn 1983

Vaﬁuc L'!MF C\tc.«'f-wu: .

CERN DD/OC Tim Berners-Lee, CERN/DD

Information Management: A Proposal March 1989

- Information Management: A Proposal

Abstract

This proposal concerns the management of general information about accelerators and cxperiments at
CERN. Tt discusses the problems of loss of information about complex evolving systems and derives a

L 1 1

(g.;n—pb
conferencing f~ L _

X

__unifies

.R.N.

ﬁc:{ ocl‘. on.

5 A \ﬂ’

“Too mﬂm*f FEDGRMUEE';. ok
N PRRjECTS THEY NE'THER

NEED ~WANT
EVERY GodD PfCCQ&« >
oF WORK) :? a

H.:mf-li *a

RFrTﬁH NG 33

ITG'H

Bell Labs: A Hive of Invention

A selection of its most important innovations in the decades leading up to the breakup of its parent company, AT&T, in 1884, and how they helped lead to some of the latest technologies.

1940s 1950s 1951 Direct-distance dialing
Mo operator necessary for
long-distance calls.
) First long-distance 1947 The transistor
computing Remote A landmarks invention, ;
aration of a computer, Replaced vacuum tubes N llﬁg‘;ma;:‘f:; IFE')"S';;:;DJ
3ell Labs in New York, and mechanical relays,; ~ practical level of elegtricity.

by a teletypewriter in
Mew Hampshire,

transformed electronics.

46 First commercial
wbile phone service

mest, three subscrit-

5 per city could make
ills at one time; each
er's phone apparatus

welghed almost BO

1948 Information theory
Calculates maximum
capacity for any commu-
nications system and
shows how Lo send
digital messages
essentially error-free,

\

1956 First transatlantic |

1960s 1962 Digital transmission,
switching First digital transmis-

sion of multiple voice signals.

1960-62 First communications satellites

1970s and '80s

1969-72 UNIX operating system

Echo is first to reflect a voice signal from

and C programming language

coast to coast; Telstar | shows an orbiting

relay can amplify and resend multiple

varied computing systems, and

phone and TV transmissicns.

the Internet, practical.

telephone cable

Designed and implemented
by Bell Labs; could carry up
0 36 simultaneous calls.

1957 Digitized music First

computer-synthesized music,

pounds, Enabled data compres-
sion and cryptography.
1947 Cellular
tlephone technology
| Labs paper was the The furray Hill,
propose a network of | N, bulldings
interiocking cell sites | apened in 1941,

7 users as they move,
3 their calls from one
12 o another without
oping the connaction.

1958 The laser “Light Amplification by Stimulated
Emission of Radiation” was described in a Bell
Labs paper. It is crucial for communications,
surgical and DVD technologies.

demonstrations of digitized and e

Bell Labs coened

1962 Paging system Bellboy pager is |

1876 Fiber-optic network
The first test of Bell Labs'

introduced at the Seattle World's Fair,

1963 Touch-tone telephone |

experimental lightwave
communication system
begins in Atlanta, Information

Enables voice mail and call centers, |

is carried by pulses of light,

1965 Evidence of the Big Bang
Discovery of cosmic background
radiation from beyond the Milky Way.

1969 Charge-coupled device
A solid-state chip that transforms
patterns of light into information. Vital
to digital cameras, high-definition
television, medical endoscopes
and video conferencing.

1978 First commercial cellular network

1979 Digital signal processor
An essential component of cellphones,
modems, PCs and video game systems.

1980 Digital cellular phone
Better sound quality, greater
channel capacity, lower cost,

Makes large-scale netwarking of |

Installed by Bell Labs in Chicage. =

=

1982 Fractional quantum hall
effect Discovery of a new
state of subatomic matter that
wins the Nobel Prize,

in Hobmdal, ML,
in 1562, It was
vacated in 2007,

LEFT AND CENTER PHOTOS COURTESY OF ALCATEL-LUCENT USA INC. AND THE AT&T ARCHIVES ANI

Bell Labs: A Hive of Invention

A selection of its most important innovations in the decades leading up to the breakup of its parent company, AT&T, in 1884, and how they helped lead to some of the latest technologies.

1940s 1950s 1951 Direct-distance dialing 1960s 1962 Digital transmission, 1970s and '80s
Mo operator necessary for switching First digital transmis-
long-distance calls. sion of multiple voice signals. ‘
’cﬂn'f;"';’l"ni"’é’et:;ﬁg bt Mt _ 1960-62 First communications satellites 1969-72 UNIX operating system
ration of 8 CompULer Replaced vacLum Iuhes' 1 1954 Solar cells First use of Echo is first to reflect a voice signal from and C programming language
;ell Labetn New \'ork' and mechanical relays: the sun's energy to create a coast to coast; Telstar | shows an orbiting Makes large-scale netwarking of
by a {eletypewriter I Wik electronucsl A practical level of electricity. relay can amplify and resend multiple varied computing systems, and
New Hampshire. phone and TV transmissions. the Internet, practical.
S,
1956 First transatlantic | 1976 Fiber-optic network
45 Flrst cammore af 1948 riprmatian. theary telephone cable 1962 Paging system Bellboy pager is | The first lest of Bell Labs'
poblle phons sarvice Calculates maximum Designed and implemented intraduced at the Seattie World's Fair. experimental lightwave o=
mast, three subscrib- capacity for any commu- [by Bell Labs: could carry up communication system
5 per city could make nications system and 4 v to 36 simultaneous calls. 1963 Touch-tone telephone | begins in Atlanta, Information
s at one time; each shows how Lo send Enables voice mail and call centers. | is carried by pulses of light.
er's phone apparatus digital messages 1957 Digitized music First
welghed alm%zln%(; Er?:;ig“gg:’ e;g{;:’:_ggl demonstrations of digitized and e 1965 Evidence of the Big Bang 1978 First commercial cellular network
: : sion and cra 10 rz‘i1 h computer-synthesized music. Discovery of cosmic backgraund Installed by Bell Labs in Chicage. =
vptography. radiation from beyond the Milky Way.
b
1947 Cellular 1958 The laser “Light Amplification by Stimulated 1969 Charge-coupled device 1979 Digital signal processor
tlephone technology Emission of Radiation” was described in a Bell A solid-state chip that transforms An essential component of cellphones, E
| Labs paper was the | the Musray Hill, Labs paper. It is crucial for communications, patterns of light into information. Vital modems, PCs and video game systems.
oropoese a network of | NI bulldings surgical and DVD technologies. to digital cameras, high-definition
interlocking cell sites | apened in 1941, television, medical endoscopes

7 users as they move,
3 their calls from one
12 o another without

and videa conferencing.

1980 Digital cellular phone
Better sound quality, greater
channel capacity, lower cost,

oping the connaction, Bell Labs opened

in Hobmdal, ML,
in 1562, It was
vacated in 2007,

1982 Fractional quantum hall
effect Discovery of a new
state of subatomic matter that
wins the Nobel Prize,

LEFT AND CENTER PHOTOS COURTESY OF ALCATEL-LUCENT USA INC. AND THE AT&T ARCHIVES ANI

l l\.l n’n

no unused imports
too opinionated

too verbose

no ternary operator
no macros or
templates

too simple / lack of syntactic sugar
no generics

bad dependency management
stuck in 70/80's

error handling

https://github.com/ksimka/qo-is-not-good

https://github.com/ksimka/go-is-not-good

WHERE
WETRE
GNG,
WEDONT
NEED
[ROA5

“Go programming language was conceived as an answer to
some of the problems we were seeing developing software
Infrastructure at Google. The computing landscape today is
almost unrelated to the environment in which the languages
being used, mostly C++, Java, and Python, had been created.
The problems introduced by multicore processors,
networked systems, massive computation clusters, and
the web programming model were being worked around
rather than addressed head-on.

“Go programming language was conceived as an answer to
some of the problems we were seeing developing software
Infrastructure at Google. The computing landscape today is
almost unrelated to the environment in which the languages
being used, mostly C++, Java, and Python, had been created.
The problems introduced by multicore processors,
networked systems, massive computation clusters, and
the web programming model were being worked around
rather than addressed head-on.

“Go programming language was conceived as an answer to
some of the problems we were seeing developing software
Infrastructure at Google. The computing landscape today is
almost unrelated to the environment in which the languages
being used, mostly C++, Java, and Python, had been created.
The problems introduced by multicore processors,
networked systems, massive computation clusters, and
the web programming model were being worked around
rather than addressed head-on.

“Go programming language was conceived as an answer to
some of the problems we were seeing developing software
Infrastructure at Google. The computing landscape today is
almost unrelated to the environment in which the languages
being used, mostly C++, Java, and Python, had been created.
The problems introduced by multicore processors,
networked systems, massive computation clusters, and
the web programming model were being worked around
rather than addressed head-on.

“Go programming language was conceived as an answer to
some of the problems we were seeing developing software
Infrastructure at Google. The computing landscape today is
almost unrelated to the environment in which the languages
being used, mostly C++, Java, and Python, had been created.
The problems introduced by multicore processors,
networked systems, massive computation clusters, and
the web programming model were being worked around
rather than addressed head-on.

Moreover, the scale has changed: today’s server programs
comprise tens of millions of lines of code, are worked on by
hundreds or even thousands of programmers, and are
updated literally every day. To make matters worse, build time
have stretched to many minutes, even hours, even
languages,on large compilation clusters,”

Moreover, the scale has changed: today’s server programs
comprise tens of millions of lines of code, are worked on by
hundreds or even thousands of programmers, and are
updated literally every day. To make matters worse, build time
has stretched to many minutes, even hours, on large
compilation clusters”

Moreover, the scale has changed: today’s server programs
comprise tens of millions of lines of code, are worked on by
hundreds or even thousands of programmers, and are
updated literally every day. To make matters worse, build time
has stretched to many minutes, even hours, on large
compilation clusters”

multicore processors
networked systems
massive computation
clusters

web programming model

e hundreds or even
thousands of programmers
e large compilation clusters

Go

80s 90s 2000 2005 2010 2017

Go
o

sagenguen

| aremyos

2017

2010

2005

90s 2000

80s

Go
o

sagenguen

| aremyos

ayndwon
3 aJemMpJeH

2017

2010

2005

90s 2000

80s

E

sagenguen
| aremyos

aindwon
3 Em?:m_._

2017

2010

2005

90s 2000

80s

=

-
&

L
|

—-

2 =)

'F*il

o

Robert Erll::umr' Fh:ul:l- Pike and Ken Thompson

Robert Griesemer, Rob Pike, Ken Thompson

5 % C (68-73) Go
£ @ UTF-8 =
» S e

80s 90s 2000 2005 2010 2017

1969

1971 to 1973

1974 to 1975

1978

1979

1980
1981
1982
1983
1984
1985
1986
1987
1988
1989

1990
1991

1992

1993
1994
1995
1996
1997
1998
1999
2000

2001 to 2004
2005

2006 to 2007
2008
2008
2010
2011

2012 to 2015
2016
2017

Unix-like systems

Linux 0.0.1

Linux
0.85 to

Minix
2.x

Linus

NexTSTEP/
OPENSTEP
1.0te 4.0

@mamed PDP-7 operating systED

Unix
Versicn 1 to 4

Unix
Wersion 5 to 6

Unix

BSD
1.0to 2.0

Version 7

BSD
3.0to 4.1

SCO Xenix

——

Unix
Version 8

BSD 4.2 G
Lito 1l
Loy [
BSD 4.3 (
Sunos

SCO Xenix
/286

System Il

System V'
R1 to R2

macOS
10.0to 10.12

(Darwin
1.2.1 to 17)

| AlX System V
1.0 R3
_ Unix 1.2 te 3.0
9 and 10
(last versions
rorm [
ol ty BSD Net/1
BSD Net/2
Sunos
386BSD &
2D SC0 UNK UnixWare
Haghs 3.2.4 1xto2.%
Lite Release 2 (Syéitfzr? 4V 2
bteE OpenServer
. E
sl 5.0 to 5.04
i |
OpenServer
AlX 5.0.5to 5.0.7
=iebais]
UnixWare

DragonFly
BSD
10tc 4.8

OpenServer
6.x

2]

7%
(System WV
R5)

%‘
10.x

Solaris
Zilite 3

Open source
Mixed/shared source

Closed source

@0ON

No future releases

Solaris
10

Solaris
10-11.3

HP-UX
1.0to 1.2

HP-UX
2.0t0 3.0

X
Btoll

HP-UX
110+

OpenSolaris
& derivatives
(illurmos, etc.)

1969

1971 to 1873

1974 to 1975

1978

1979

1980
1981
1982
1983
1984
1985
1986
1987
1988
1989

1990
1991

1992

1993
1994
1995
1996
1997
1998
1998
2000

2001 to 2004
2005

2006 to 2007
2008
2008
2010
2011

2012to 2015
2016
2017

Robert Griesemer, Rob Pike, Ken Thompson

= % 68-73) Go
E % UTF-8 Hotspot T
S S ® J
Unix ®
(60s) Plan 9
0S
80s 90s 2000 2005 2010 2017

Go’'s 21st Century Characteristics

Concurrency
Distributed Systems
Garbage Collection
Memory Locality
Readability

D
<
=
=
(=]
7

re &

Hard

Con;taa ute

Concurrency

% Go
gn (&
S o
C++ at
Google
80s 90s 2000 2005 2010 2017

D
<
=
=
(=]
7

re &

Hard

Con;taa ute

Concurrency

% Go
gn (&
S o
C++ at
Google
o
C10K
80s 90s 2000 2005 2010 2017

D
<
=
=
(=]
7

Concurrency

- Epoll
& (liftx) G
2 Kqueue ®
g (BSD) 2
C++ at
Google
|
C10K
80s 90s 2000 2005 2010 2017

@
Concurrency

SEDA
®
Java NIO
Epoll
—/.
° & (i) %
= 3 Kqueue ®
L
38 (85B) a2
C++ at
Google
@
P4 ()
P Core 2
C10K

90s 2000 2005 2010 2017

@
Concurrency

SEDA
®
Java NIO
Epoll
"
° & (i) %
= 3 Kqueue ®
s =
38 (85B) a2
C++ at
Google
|
C10K

90s 2000 2005 2010 2017

@
Concurrency

SEDA
®
Java NIO
Epoll
—/.
° & (i) %
= 3 Kqueue ®
L
38 (85B) a2
C++ at
Google
@
P4 ()
P Core 2
C10K

90s 2000 2005 2010 2017

Transistors
(thousands)

Single-thread
- Performance
(SpecINT)

D
<
=
£
(=]
7

Typical Power
~ (Watts)

Number of
- Cores

Hardware &

80s 90s 2000 2005 2010 2017

@
Concurrency

SEDA
®
Java NIO
Epoll
—/.
° & (i) %
= 3 Kqueue ®
L
38 (85B) a2
C++ at
Google
@
P4 ()
P Core 2
C10K

90s 2000 2005 2010 2017

D
<
=
=
(=]
7

Languages

SEDA
®

Java NIO

Epoll

Concurrency

@ .
(linux) Gunicorn

Kqueue

(BSD)

P4

C10K

@ython)

o o
C++ at Ruby

Google Mongrel

o
Core 2

90s

2000

2005 2010 2017

Transistors
(thousands)

Single-thread
- Performance
(SpecINT)

D
<
=
£
(=]
7

Typical Power
~ (Watts)

Number of
- Cores

Hardware &

80s 90s 2000 2005 2010 2017

— = Transistors

(thousands)
— -— —_—— Single-thread
: - Performance
— SpecINT
g4 10 TeTE2T L (SpeciNT)
= . s
=
t _____________________ —
o
n
r———m—#——— — — — Typical Power
T S "7 (Watts)

~ Number of
~ Cores

Hardware &

80s 90s 2000 2005 2010 2017

Events, Threads and Goroutines

Nginx - event loop plus state machine model

Events, Threads and Goroutines

Nginx - event loop plus state machine model

C NGINX
App logic

Events, Threads and Goroutines

Nginx - event loop plus state machine model

C NGINX
Appegie

_ /

Events, Threads and Goroutines

Nginx - event loop plus state machine model

C NGINX A g

Events, Threads and Goroutines

Nginx - event loop plus state machine model

C NGINX)

_ J

Events, Threads and Goroutines

Nginx - event loop plus state machine model

C NGINX

Events, Threads and Goroutines

Nginx - event loop plus state machine model

C NGINX

Events, Threads and Goroutines

Nginx - event loop plus state machine model

C NGINX

NOY¢
\©C|¢

Events, Threads and Goroutines

Nginx - event loop plus state machine model

nudc

e
.
o

C NGINX) App

_ J

D
<
=
=
(=]
7

@
Concurrency

SEDA
o
Java NIO
- Epgll
o (linux) Go NodeJs
S o
o Kqueue ® o
S 8$D) Gunicorn
o ot ® (Python)
C++ at Ruby (ytho
> Google Mongrel
P4 o
P Core 2
C10K
90s 2000 2005 2010 2017

D
<
=
=
(=]
7

@
Concurrency

SEDA
®
Java NIO
0 EpoH//////’\\\h%
& (lintx) Go NodeJs
2 Kqueue ® & o
S 8$D) Gunicorn
- ot ® (Python)
C++ at Ruby (y

> Google Mongrel

P4 ()

P Core 2

C10K

90s 2000 2005 2010 2017

D
<
=
=
(=]
7

@
Concurren
SEDA -

- Epoll
& (lintix) oo NodeJs
(1]
2 Kqueue o_9°
S 8$D) Gunicorn
- ot ® (Python)
C++ at Ruby (y
> Google Mongrel
P4 ()
P Core 2
C10K
90s 2000 2005 2010 2017

NGINX EVENT LOOP

WAIT FOR EVENTS
ON CONNECTIONS

RECEIVE A QUEUE
OF NEW EVENTS

PROCESS THE EVENTS
QUEUE IN CYCLE

sk:nsm'

GET Avelcome ghoarre
erbﬂum- S el Wb sener
. name=
‘---..,,/ 201 0K ﬂ i
Sot-Conkie: PHPSESSID=12345

200K % |

W
PHPSESSID=12345

e

200 0K '
<html>.. Hi William...<htmi=>

e W
T

7 d % {mmpuﬁ'essmdms

Cookie: PHPSESSiD=12345 !
*”___&——"_‘ ’ Semn!i‘m'

]
=T e e
o
S =y

GET

et Browser -\h@%

- s - Session Store
Sot Copkie: PHPSESSID=12343

Gﬁ,l"nﬂt h
i Cookie:PHPSESSID=12345 Az
<y .: I
200 0K oz 3
William...</hemi= Session Store

<htmlz.. Hi

N

Vet Browser %ﬁn\‘
N s - Session Store
Sf:t—l'.wkie:PHP’SESS“J:‘IEHS

= Threads
GET /next ph
T |

200 0K < 3
William...</hemi= Session Store

<htmlz.. Hi

Regfs’e r
(a/
ey

REQUESTS, ETC

INTENSIVE

EVENT LOOP OPERATION

(single thread) T Fe Systom

Database

: | Computation | :

Ir igger Callback

]
{Think for a while |

Lock left chop

Lock right chop

H

| Eatfor awhile |

Unlock left chop

Unlock right chop

H

Syscall impact on user-mode IPC

—
[

g5 '
s 3 1
LR Lost performance (cycles)
;_ﬁ 0.7
m
— 0§
= £ Syscall exception

=
(=3

0 2000 4000 S0D0 BOOG 10000 12000 14000 15000
Time {in cycles)

Therise of)

. o
Distributed :
SEDA containers +
Systems ® cloud-native+
Java NIO ecosystem
Microservices
\serverless /
p— Epgll
g ﬁ:p (|inux) G.O NO:GJS
£ o Kqueue o
S g BSD Gunicorn
n S (BSD) ®
C++ at Rtﬁy (Python)
> Google Mongrel
P4 ()
P Core 2
C10K
90s 2000 2005 2010 2017

D
<
=
=
(=]
7

Therise of)

®
Garbage .
_ SEDA containers +
Collection o cloud-native+
Java NIO ecosystem
Microservices
\serverless /
- Epoll
@ N
?é) (||nux) Go NodeJS
2 Kqueue ® & o
S 8$D) Gunicorn
o ot ® (Python)
C++ at Ruby (ytho
> Google Mongrel
P4 ()
P Core 2
C10K
90s 2000 2005 2010 2017

D
<
=
=
(=]
7

Therise of)

®
Memgry SEDA containers +
Locality o cloud-native+
Java NIO ecosystem
Microservices
\serverless /
- Epgll
ﬁ:p (|inux) Go NodedS
2 Kqueue ® & o
S BSD Gunicorn
— () O
C++ at Rtﬁy (Python)
> Google Mongrel
P4 ()
P Core 2
C10K
90s 2000 2005 2010 2017

D
<
=
=
(=]
7

Therise of)

®
Memory .
_ SEDA containers +
Locality o cloud-native+
Java NIO ecosystem
Microservices
serverless
Ho IVlgot Epoll / N 4
n
5:9 JV (Iin.ux) Go NodeJs
2 Kqueue ® & o
S 8$D) Gunicorn
| () o
C++ at Ruby (Python)
> Google Mongrel
P4 ()
P Core 2
C10K
90s 2000 2005 2010 2017

Memory Locality

Java

No value types

Everything Allocated

Memory Locality

Java

No value types

Everything Allocated

Go

Memory Locality

Java Go

No value types Structs

Everything Allocated True Value types

Memory Locality

Java Go

No value types Structs
Everything Allocated True Value types
Can't return multiple values

® /T he rise of)
SEDA containers +
® cloud-native+
Java NIO ecosystem
Microservices
serverless
Hotspot Epoll / N %
= Kqueue ® ©® o
A (Bsﬁ) o Gunicorn
C++ at Rtﬁy (Python) \
> Google Mongrel
P4 ()
P Core 2
C10K
90s 2000 2005 2010 2017

When the three of us [Ken Thompson, Rob Pike, and Robert
Griesemer] got started, it was pure research. The three of us got
together and decided that we hated C++. [laughter] ... [Returning
to Go,] we started off with the idea that all three of us had to be
talked into every feature in the language, so there was no
extraneous garbage put into the language for any reason.

https://en.wikipedia.org/wiki/Rob_Pike
https://en.wikipedia.org/w/index.php?title=Robert_Griesemer&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Robert_Griesemer&action=edit&redlink=1

D
<
=
=
(=]
7

Therise of)

®
Memory .
_ SEDA containers +
Locality o cloud-native+
Java NIO ecosystem
Microservices
serverless
”0::3“ Epoll NS <
n
2 Kqueue ® & o 18
c : % @
< (Bsﬁ) Gunicorn
| () o
C++ at Ruby (Python)
> Google Mongrel
P4 ()
P Core 2
C10K
90s 2000 2005 2010 2017

Memory Locality

Java Go

No value types Structs
Everything Allocated True Value types
Can't return multiple values

Memory Locality

Java Go
No value types Structs
Everything Allocated True Value types

Can’t return multiple values compact object layout

No object headers

Memory Locality

Java Go UTF-8
No value types Structs
Everything Allocated True Value types

Can’t return multiple values compact object layout

No object headers

Memory Locality

e UTF-16

No value types
Everything Allocated

Can't return multiple values

£l UTF-8

Structs

True Value types
compact object layout
No object headers

Memory Locality

e UTF-16

No value types
Everything Allocated

Can't return multiple values

£l UTF-8

Structs

True Value types
Compact object layout
No object headers
Lazy initialization of
collections

Memory Locality (conclusion)

Memory Locality (conclusion)

® (o gives programmers the tools to talk about memory
efficiently if they need it.

Memory Locality (conclusion)

® (o gives programmers the tools to talk about memory
efficiently if they need it.
e Flexible

Memory Locality (conclusion)

® (o gives programmers the tools to talk about memory
efficiently if they need it.

® Flexible

e Memory management (not an all-or-nothing like in C++ or
Rust)

Readability

“ Debugging is twice as hard as writing the code in the first
place. Therefore, if you write the code as cleverly as possible,
you are, by definition, not smart enough to debug it. "—Brian
Kernighan

D
<
=
=
(=]
7

Therise of)

®
Memory .
_ SEDA containers +
Locality o cloud-native+
Java NIO ecosystem
Microservices
serverless
”0::3“ Epoll NS <
n
2 Kqueue ® & o 18
c : % @
< (Bsﬁ) Gunicorn
| () o
C++ at Ruby (Python)
> Google Mongrel
P4 ()
P Core 2
C10K
90s 2000 2005 2010 2017

D
<
=
=
(=]
7

® Therise of
Memory .
_ SEDA containers +
Locality o cloud-native+
Java NIO ecosystem
Microservices
serverless
Hotspat: Epoll N /
530 JV (|") NodeJS
o Inux Go pu Go GC
2 Kqueue ® o 18
(= 30000 . % @
< (Bsﬁ) - Gunicorn
C++ at Rtﬁy (Python)
2oooo° Google Mongrel
P4
10000 | # of google
employees in
C10K 2007: 16,805
90s 2000 2005 2010 2017

D
<
=
=
(=]
7

Therise of)

o
Memory .
i SEDA containers +
Locality o cloud-native+
Java NIO ecosystem
Microservices
serverless
- Hotspot: Epoll N /
@
S Kqueue o O 2010:
= 3000% 24440 18 @
L (BSD)
20000
P4
10000
C10K
90s 2000 2005 2010 2017

Memory
. SEDA
Locality o
Java NIO
Hotspet,
e & V
‘é S Kqueue
55 (835)
20000 20O=I1e
P4
10000
C10K

90s 2000 2005 2010 2017

Readability

simplicity

“‘simple is better”

Readability

simplicity

“this Is an insult to

“‘simple is better” . . i
intelligent programmers

Readability

simplicity

“‘simple is better”

“you're trying to
commodify programming
and create a situation
where our bosses can
replace us at will”

“You're not paid to program, you're not even paid to maintain
someone else’s program, you're paid to deliver solutions to the
business.”

- Dave Cheney

Readability

Programs which cannot be maintained will be rewritten

Readability

Programs which cannot be maintained will be rewritten

“If you can’t be replaced, you cannot be promoted”

2017:

Memory S:DA Average length of tenure at company: 75,606
Locality o
Java NIO
. Hotspat: Epoll
® & JV (lintx) Go NodeJs
£ o Kqueue ® © o s
S S 3000% 2@
» S (BSD) 'lcorn
on)
20000 00sIe
P4
10000
C10K

90s 2000 2005 2010 2017

2017:

Memory S:DA Average length of tenure at company: 75,606
Locality o —
Java NIO
. Hotspat: Epoll
® & JV (lintx) Go NodeJs
£ o Kqueue ® © o s
S S 3000% 2@
» S (BSD) 'lcorn
on)
20000 00sIe
P4
10000
C10K

90s 2000 2005 2010 2017

2017:

Memory S:DA Average length of tenure at company: 75,606
Locality o C— (—
Java NIO
. Hotspat: Epoll
® & JV (lintx) Go NodeJs
£ o Kqueue ® © o s
S S 3000% 2@
» S (BSD) 'lcorn
on)
20000 00sIe
P4
10000
C10K

90s 2000 2005 2010 2017

2017:

Memory S:DA Average length of tenure at company: 75,606
Locality o) — (— (—)
Java NIO
Hotspet,
"
§ §9 N Go GC
Kqueue
3 ?j: (BSD) e
20000 2005Ie
P4
10000
C10K

90s 2000 2005 2010 2017

Software Engineering

Software Engineering vs Programming

Software Engineering

Software Engineering vs Programming

Software Engineering = Programming integrated over time.

Software Engineering

Software Engineering vs Programming
Software Engineering = Programming integrated over time.

Engineering is what happens when things need to live longer and influence of
time starts creeping in. -Titus Winters

Software Engineering

Software Engineering vs Programming
Software Engineering = Programming integrated over time.

Engineering is what happens when things need to live longer and influence of
time starts creeping in. -Titus Winters

All this complexity is fundamentally a different flavor than programming.

Software Engineering

focus on sustaining engineering (readability)

Software Engineering

focus on sustaining engineering (readability)

continuance of many different engineers over a long period of time

Software Engineering

focus on sustaining engineering (readability)
continuance of many different engineers over a long period of time

clear module boundaries

Software Engineering

focus on sustaining engineering (readability)
continuance of many different engineers over a long period of time
clear module boundaries

keeping import dependencies between packages linear, thus keeping compile
times down.

Simplicity and the Greater Good

0 3060
Y 0999
Ve +BIBIE
CLLTL

“Simplicity i1s a great virtue but it requires hard work to achieve it
and education to appreciate it. And to make matters worse:
complexity sells better.”

— Edsger W. Dijkstra

D
<
=
=
(=]
7

2010:

®
Average length of tenure at company:
SEDA 75,606
®) e —) —
Java NIO
: A
o (linux) G.O Go GC
=)
g ﬁﬂgue 18 o
S (BSD) A
C++ at
20000 G.QQg!e g'rei
P4
10000
C10K
90s 2000 2005 2010 2017

The Future?

E

sagengue
| aremyos

aindwon
3 2«3_:«_._

2040

2035

2030

2020 2025

2017

The Future?

The problems we have today were not there 20
years ago, nor will be problems we face 20 years

from now.

= &
5 ¥
= 3
= W
o S
» 3

2017 2020 2025 2030 2035 2040

The Future?

...It may surprise you

> 8
5 ¥
= 3
= W
o S
» 3

2017 2020 2025 2030 2035 2040

Thank you!

Carmen Andoh @carmatrocity
QCon San Francisco

21st Century Languages Track
November 2017

