
Managing Data
in Microservices

Randy Shoup
@randyshoup

linkedin.com/in/randyshoup

Background
• VP Engineering at Stitch Fix

o Using technology and data science to revolutionize clothing retail

• Consulting “CTO as a service”
o Helping companies move fast at scale J

• Director of Engineering for Google App Engine
o World’s largest Platform-as-a-Service

• Chief Engineer at eBay
o Evolving multiple generations of eBay’s infrastructure

Stitch Fix

@randyshoup linkedin.com/in/randyshoup

Stitch Fix

@randyshoup linkedin.com/in/randyshoup

Stitch Fix

@randyshoup linkedin.com/in/randyshoup

Stitch Fix

@randyshoup linkedin.com/in/randyshoup

Personalized
Recommendations

Inventory
Algorithmic

recommendations

Machine learning

@randyshoup linkedin.com/in/randyshoup

Expert Human
Curation

Human
curation

Algorithmic
recommendations

@randyshoup linkedin.com/in/randyshoup

Data at the Center
• 1:1 Ratio of Data Science to Engineering

o More than 100 software engineers
o ~80 data scientists and algorithm developers
o Unique ratio in our industry

• Apply intelligence to *every* part of the business
o Buying
o Inventory management
o Logistics optimization
o Styling recommendations
o Demand prediction

• Humans and machines augmenting each other

@randyshoup linkedin.com/in/randyshoup

Design Goals
• Feature Velocity

o Teams can move rapidly and independently

• Scalability
o Components can be scaled independently depending on load

• Resilience
o Component failures are isolated, do not cascade

@randyshoup linkedin.com/in/randyshoup

High-Performing
Organizations

• Multiple deploys per day vs. one per month

• Commit to deploy in less than 1 hour vs. one week

• Recover from failure in less than 1 hour vs. one day

• Change failure rate of 0-15% vs. 31-45%

@randyshoup linkedin.com/in/randyshoup

https://puppet.com/resources/whitepaper/state-of-devops-report

High-Performing
Organizations

è2.5x more likely to exceed
business goals
o Profitability
oMarket share
o Productivity

@randyshoup linkedin.com/in/randyshoup

https://puppet.com/resources/whitepaper/state-of-devops-report

“Tell us how you did things at
Google and eBay.”
…
“Sure, I will tell you, but you
have to promise not to do them!
[… yet]”

Evolution to
Microservices

• eBay
• 5th generation today
• Monolithic Perl à Monolithic C++ à Java à microservices

• Twitter
• 3rd generation today
• Monolithic Rails à JS / Rails / Scala à microservices

• Amazon
• Nth generation today
• Monolithic Perl / C++ à Java / Scala à microservices

@randyshoup linkedin.com/in/randyshoup

No one starts with microservices
…

Past a certain scale, everyone
ends up with microservices

If you don’t end up regretting
your early technology
decisions, you probably over-
engineered.

Microservices

• Single-purpose
• Simple, well-defined interface
• Modular and independent

A

C D E

B

Microservices

• Single-purpose
• Simple, well-defined interface
• Modular and independent
• Isolated persistence (!)

A

C D E

B

Extracting
Microservices

• Problem: Monolithic shared DB

• Clients
• Shipments
• Items
• Styles, SKUs
• Warehouses
• etc.

stitchfix.com Styling app Warehouse app Merch app

CS app Logistics app Payments service Profile service

Extracting
Microservices

• Decouple applications / services from shared DB

• Clients
• Shipments
• Items
• Styles, SKUs
• Warehouses
• etc.

stitchfix.com Styling app Warehouse app Merch app

CS app Logistics app Payments service Profile service

Extracting
Microservices

• Decouple applications / services from shared DB

Styling app Warehouse app

core_item

core_sku

core_client

Extracting
Microservices

• Step 1: Create a service

Styling app Warehouse app

core_item

core_sku

core_client

client-service

Extracting
Microservices

• Step 2: Applications use the service

Styling app Warehouse app

core_item

core_sku

core_client

client-service

Extracting
Microservices

• Step 3: Move data to private database

Styling app Warehouse app

core_item

core_sku

client-service

core_client

Extracting
Microservices

• Step 4: Rinse and Repeat

Styling app Warehouse app

core_sku

client-service

core_client

item-service

core_item

Extracting
Microservices

• Step 4: Rinse and Repeat

Styling app Warehouse app

client-service

core_client

item-service

core_item

style-service

core_sku

With Microservices, how do
we do
• Shared Data
• Joins
• Transactions

Events as
First-Class Construct

• “A significant change in state”
o Statement that some interesting thing occurred

• Traditional 3-tier system
o Presentation è interface / interaction
o Application è stateless business logic
o Persistence è database

• Fourth fundamental building block
o State changes è events
o 0 | 1 | N consumers subscribe to the event, typically asynchronously

@randyshoup linkedin.com/in/randyshoup

Microservices
and Events

• Events are a first-class part of a service interface

• A service interface includes
o Synchronous request-response (REST, gRPC, etc)
o Events the service produces
o Events the service consumes
o Bulk reads and writes (ETL)

• The interface includes any mechanism for getting
data in or out of the service (!)

@randyshoup linkedin.com/in/randyshoup

Microservice Techniques:
Shared Data

• Monolithic database makes it easy to leverage
shared data

• Where does shared data go in a microservices
world?

@randyshoup linkedin.com/in/randyshoup

Microservice Techniques:
Shared Data

• Principle: Single System of Record
o Every piece of data is owned by a single service
o That service is the canonical system of record for that data

• Every other copy is a read-only, non-authoritative
cache

@randyshoup linkedin.com/in/randyshoup

customer-service
styling-service

customer-search

billing-service

Microservice Techniques:
Shared Data

• Approach 1: Synchronous Lookup
o Customer service owns customer data
o Fulfillment service calls customer service in real time

fulfillment-service

customer-service

@randyshoup linkedin.com/in/randyshoup

Microservice Techniques:
Shared Data

• Approach 2: Async event + local cache
o Customer service owns customer data
o Customer service sends address-updated event when customer address

changes
o Fulfillment service caches current customer address

fulfillment-servicecustomer-service

@randyshoup linkedin.com/in/randyshoup

Microservice Techniques:
Joins

• Monolithic database makes it easy to join tables

• Splitting the data across microservices makes joins
very hard

@randyshoup linkedin.com/in/randyshoup

SELECT FROM A INNER JOIN B ON …

Microservice Techniques:
Joins

• Approach 1: Join in Client Application
o Get a single customer from customer-service
o Query matching orders for that customer from order-service

Customers

Orders

order-history-page

customer-service order-service

Microservice Techniques:
Joins

• Approach 2: Service that “Materializes the View”
o Listen to events from item-service, events from order-service
o Maintain denormalized join of items and orders together in local storage

Items Order Feedback

item-feedback-serviceitem-service
order-feedback-service

Microservice Techniques:
Joins

• Many common systems do this
o “Materialized view” in database systems
o Most NoSQL systems
o Search engines
o Analytic systems

@randyshoup linkedin.com/in/randyshoup

Microservice Techniques:
Workflows and Sagas

• Monolithic database makes transactions across
multiple entities easy

• Splitting data across services makes transactions
very hard

@randyshoup linkedin.com/in/randyshoup

BEGIN; INSERT INTO A …; UPDATE B...; COMMIT;

Microservice Techniques:
Workflows and Sagas

• Transaction è Saga
o Model the transaction as a state machine of atomic events

• Reimplement as a workflow

• Roll back by applying compensating operations in
reverse

A B C

A B C

@randyshoup linkedin.com/in/randyshoup

Microservice Techniques:
Workflows and Sagas

• Many common systems do this
o Payment processing
o Expense approval
o Any multi-step workflow

@randyshoup linkedin.com/in/randyshoup

With Microservices, how do
we do
• Shared Data
• Joins
• Transactions

Thanks!
• Stitch Fix is hiring!

o www.stitchfix.com/careers
o Based in San Francisco
o Hiring everywhere!
o More than half remote, all across US
o Application development, Platform engineering,

Data Science

• Please contact me
o @randyshoup
o linkedin.com/in/randyshoup

