
Making Session Stores
More Intelligent
KYLE J. DAVIS

TECHNICAL MARKETING MANAGER

REDIS LABS

What	is	a	session	store?

• An	chunk	of	data	that	is	connected	to	one	“user”	of	a	service
– ”user”	can	be	a	simple	visitor	
– or	proper	user	with	an	account

• Often	persisted	between	client	and	server	by	a	token	in	a	cookie*
– Cookie	is	given	by	server,	stored	by	browser
– Client	sends	that	cookie	back	to	the	server	on	subsequent	requests
– Server	associates	that	token	with	data

• Often	the	most	frequently	used	data	by	that	user
– Data	that	is	specific	to	the	user
– Data	that	is	required	for	rendering	or	common	use

• Often	ephemeral	and	duplicated

A	session	store	is…

Session Storage Uses Cases

Traditional
• Username
• Preferences
• Name
• “Stateful” data

Intelligent
• Traditional +
• Notifications
• Past behaviour
– content surfacing
– analytical information
– personalization

In a simple world

Internet Server Database

Good problems

Internet Server Database
Traffic Grows… Struggles

Good solution

Internet Server Database

performance restored

Session storage
on the server

More good problems

Internet Server Database
Session storage

on the server

Struggling

Problematic Solutions

Internet Server Database
Session storage

on the server

Load balanced

Session storage
on the server

Multiple Servers + On-server Sessions?

Server DatabaseRobin

Server	#1	– Hello	Robin!

Multiple Servers + On-server Sessions?

Server DatabaseRobin

Server	#3	– Hello	????

Better solution

Internet Server Database

Load balanced

Redis
Session Storage

What	is	Redis?

Who	We	Are

Open	source.	The	leading	in-memory	database	platform,	
supporting	any	high	performance	operational,	analytics	or	
hybrid	use	case.

The	open	source	home	and	commercial	provider	of	Redis
Enterprise	technology,	platform,	products	&	services.

14

Redis	Top	Differentiators

Simplicity Extensibility	Performance
NoSQL	Benchmark

1

Redis Data	Structures

2 3

Redis Modules

15

Lists

Hashes

Bitmaps

Strings

Bit	field

Streams

Hyperloglog

Sorted	Sets

Sets

Geospatial	Indexes

Performance:	The	Most	Powerful	Database

Highest	Throughput	at	Lowest	Latency	
in	High	Volume	of	Writes	Scenario

Least	Servers	Needed	to	
Deliver	1	Million	Writes/Sec

Benchmarks	performed	by	Avalon	Consulting	Group Benchmarks	published	in	the	Google	blog

16

1

Se
rv
er
s	u

se
d	
to
	a
ch
ie
ve
	1
M
	w
rit
es
/s
ec

10k

20k

30k

40k

0

100

200

300

400

500

0
Couchbase Cassandra Datastax Redise

394.42 381.31 372.31

71.22A
pp

lic
at

io
n

re
qu

es
ts

/s
ec

Latency in M
illiseconds

Applica!on Latency (msec)

CouchbaseCassandra Redise

$14,832$371,040$2,226,216

25X150X

ANNUAL COST

COST COMPARED
TO REDISe

350

300

250

200

150

100

50

0

Simplicity: Data	Structures	- Redis’	Building	Blocks

Lists
[A	→	B	→	C	→	D	→	E]

Hashes
{	A:	“foo”,	B:	“bar”,	C:	“baz”		}

Bitmaps
0011010101100111001010

Strings
"I'm	a	Plain	Text	String!”

Bit	field
{23334}{112345569}{766538}

Key

17

2

”Retrieve	the	e-mail	address	of	the	user	with	the	highest	
bid	in	an	auction	that	started	on	July	24th	at	11:00pm	PST” ZREVRANGE	07242015_2300	0	0=

Streams
à{id1=time1.seq1(A:“xyz”,	B:“cdf”),	

d2=time2.seq2(D:“abc”,)}à

Hyperloglog
00110101	11001110

Sorted	Sets
{	A:	0.1,	B:	0.3,	C:	100 }

Sets
{		A	,	B	,	C	,	D	,	E		}

Geospatial	Indexes
{	A:	(51.5,	0.12),	B:	(32.1,	34.7)	}

• Add-ons	that	use	a	Redis	API	to	seamlessly	support	additional	
use	cases	and	data	structures.

• Enjoy	Redis’	simplicity,	super	high	performance,	infinite	
scalability	and	high	availability.

Extensibility: Modules	Extend	Redis	Infinitely

• Any	C/C++/Go	program	can	become	a	Module	and	run	on	Redis.

• Leverage	existing	data	structures	or	introduce	new	ones.

• Can	be	used		by	anyone;		Redis	Enterprise	Modules	are	tested	and	certified	by	Redis	
Labs.

• Turn	Redis	into	a	Multi-Model database

18

3

Redise Pack	Managed
Fully	managed	Redise

Pack	in	private	
datacenters

Redise Pack
Downloadable	Redise
software	for	any	

enterprise	datacenter	
or	cloud	environment

Redise Cloud	Private
Fully	managed,	server-
less	scaling	Redise

service	in	VPCs	within	
AWS,	MS	Azure,	GCP	
and	IBM	Softlayer

Redise Cloud
Fully	managed,	server-
less	Redise service	on	
hosted	resources	

within	AWS,	MS	Azure,	
GCP,	IBM	Softlayer,	
Heroku,	CF	and	

OpenShift

Redis	Labs	Products

19

or or or

DBaaS Software

Concepts

• Probabilistic	data	structure	
• Hash	->	sample	bits	->	set	bits
• Properties:
– False	negatives	– not	possible
– False	positives	– possible,	but	controllable
– Bits	per	item	stored
– Add	or	check	if	exists
– Like	the	Tardis,	it’s	bigger	on	the	inside	than	outside

• Availability:
– Redis Module
– On	top	of	bitfields

Concept:	Bloom	Filters	(presence)

• Probabilistic	data	structure	
• Hash	->	count	runs	->	store	runs
• Properties:
– Estimates	unique	items
– Bits	per	item	stored	– 264	unique	items	in	12kb	/	
error	rate	0.81%
– Add,	count	or	merge!
– Like	the	Tardis,	it’s	bigger	on	the	inside	than	
outside

• Availability:
– All	versions	of	Redis

Concept:	HyperLogLog (cardinality)

engineering.conversantmedia.com

• It’s	just	bits!
• Fixed	starting	point,	each	point
represents	a	moment	in	time,	flip	to	
represent	activity
• Properties:
– Size	relative	to	length	of	time	(byte	round)
– Count	totals	or	ranges
– BITOP	(AND/XOR/OR/NOT)

• Availability:
– All	versions	of	Redis

Concept:	Bit	counting	(time	series)

Group	Notifications

Process

• Group	of	users	get	notification	“Sale	on	sweaters”
• Insert	into	central	table	of	notifications
• Insert	row	in	table	with	each	user	of	group	with	notification	and	seen	flag
• Each	time	it	is	needed,	query	notifications	table	where	seen	flag	is	false.

Traditional	Group	Notification	Pattern

Traditional	Group	Notification	Pattern
Challenges

• Adding/removing	means	touching	a	row	for	each	user	in	group.
– Fine	for	groups	of	10	users,	what	about	1	million?
– Also	multi-step

• Storage	is	proportional	to	size	of	group	and	notifications
• Constant	DB	hits,	not	easily	cacheable
• Setting	“read”	is	DB	write

Process

• Add	notification	to	single	group	based	structure	or	table	(easily	cacheable)
• First	n notifications	are	read	by	all	users	in	group.
• The	notifications	are	checked	to	see	if	they	are	in	a	session-based	Bloom	filter	or	not.
• Mark	read	by	adding	to	Bloom	filter	in	session	store.

Modern	&	Intelligent	Group	Notification	Pattern

Modern	&	Intelligent	Group	Notification	Pattern
Advantages

• Adding	a	notification	only	writes	to	a	single	table,	single	row.
• Model	fits	use	– unread	assumed.
• Fast.	Checking	for	read	/	writing	read	is	unrelated	to	number	of	items	in	the	filter.	
Consistent.
• ~5-bits per	item,	but	Bloom	filter	doesn’t	always	grow.
• Gentle	scaling

Visual

Notification	#1
Notification	#2
Notification	#3
Notification	#4
Notification	#5
Notification	#6

✔

✗
✔

✗
✔

✗

Notification	#1
Notification	#2
Notification	#3
Notification	#4
Notification	#5
Notification	#6

✗

Fresh	Content

Process

• Hand	pick	and	rotate	a	small	number	of	
content/items
• Stored	in	DB	table
• Served	out	dumbly	to	users

Traditional	Content	Surfacing	Pattern	(Basic)
Challenges

• May	serve	content	multiple	times
• Freshness	is	linked	to	a	manual	curatorial	
process

Traditional	Content	Surfacing	Pattern	(Advanced)

Process	

• Batch	process	builds	content	list	to	surface	
for	each	user
• List	is	stored	in	DB	Table	
• Served	out	to	user
• Rotated	on	a	schedule

Challenges

• Not	Real-time
• May	serve	content	multiple	times
• Un-cacheable	DB	content
• Hard	to	scale

Process

• Middleware	adds	each	content	read	to	a	
Bloom	filter	stored	in	the	session
• Featured	content	list	is	built,	can	be	
extensive.
• Featured	items	are	checked	vs	Bloom	filter	
on-the-fly

Modern	&	Intelligent	Content	Surfacing	Pattern
Advantages

• No	DB	hits	for	user
• Featured	content	is	cacheable
• Will	not	to	show	content	multiple	times	if	
read
• Tiny	storage	requirements	even	at	scale
• Freshness	can	be	achieved	with	zero/low	
human	input	
• Real-time	recording	of	activity	–
immediate	impact	on	fresh	content

Visual

Content	#1
Content	#2
Content	#3
Content	#4
Content	#5
Content	#6

✔

✗
✔

✗
✔

✗

Content	#1

Content	#1

✗

Content	#3

Content	#5

Activity	Pattern	Monitoring	&	Personalization

• Monitor	the	usage	behaviour
– Content	viewed
– Activity	over	time
– Combinations	of	content	history	and	activity

• Personalize	the	content	based	on	the	behaviour
• Seen	as	difficult	to	accomplish
– Analytics	data	

• Stored	in	another	service
• Anonymized	

– Complicated	graph	or	ML	based	solutions
• Inferences
• Black	boxes

Activity	Pattern	Monitoring	&	Personalization?

• Record	site	activity	with	bit	counting
• Unique	page	views	in	HyperLogLog
• Leverage	the	page	visit	Bloom	filter
• Simpler	counter	for	pages	consumed
• Create	criteria	based	on	session	stored	analytics
– New	to	a	page?	Bloom	filter
– New	to	the	site?	Unique	Page	view	=	1	(HLL)	&&	Previously	Visited	=	false	(Bloom)
– Inactive	user?	Sum	the	bit	count	over	the	last	five	records,	if	=	0	then	inactive
– Been	to	a	cluster	of	pages	(infer	interest)?	Check	cluster	of	pages	vs	Bloom	filter	– combo!

Activity	Pattern	Monitoring	&	Personalization

• Why	is	this	suddenly	possible?
– Probabilistic	data	structures	are	small/fast
– Bit	counting	is	small/fast
– Decoupled	from	operational	database

• What	about	privacy?
– Legitimate	concern
– Non-reversible	probabilistic	structures
– Siloed from	rest	of	database

Activity	Pattern	Monitoring	&	Personalization

Questions?

Thank	you!
Demo	source	code:
https://github.com/stockholmux/qcon-redis-session-store-demo

