
Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Modern Development

With MySQL
Nicolas De Rico

nicolas.de.rico@oracle.com

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Safe Harbor Statement

The following is intended to outline our general product direction.
It is intended for information purposes only, and may not be
incorporated into any contract.

It is not a commitment to deliver any material, code, or
functionality, and should not be relied upon in making purchasing
decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole
discretion of Oracle.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

5.7

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

MySQL Document Store

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Document
Store

JSON

NoSQL

Cluster

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

New! Native JSON Data Type

CREATE TABLE employees (data JSON);

INSERT INTO employees VALUES ('{"id": 1, "name": "Jane"}');

INSERT INTO employees VALUES ('{"id": 2, "name": "Joe"}');

SELECT * FROM employees;

+---------------------------+

| data |

+---------------------------+

| {"id": 1, "name": "Jane"} |

| {"id": 2, "name": "Joe"} |

+---------------------------+

2 rows in set (0,00 sec)

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

JSON Data Type Specifications

• utf8mb4 character set

• Optimized for read intensive workload
– Parse and validation on insert only

• Dictionary:
– Sorted objects' keys

– Fast access to array cells by index

• Full type range supported:
– Standard: numbers, string, bool, objects, arrays

– Extended: date, time, timestamp, datetime, others

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

SQL Example

mysql> SELECT DISTINCT

data->’$.zoning’ AS Zoning

FROM lots;

+--------------+

| Zoning |

+--------------+

| "Commercial" |

+--------------+

1 row in set (1.22 sec)
Special new syntax to
access data inside JSON
documents

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Advantages of Native JSON

• Provides Document Validation:

• Efficient Binary Format.
– Allows quicker access to object members and array elements

– Well suited for InnoDB Barracuda file format

> INSERT INTO employees VALUES ('some random text');

ERROR 3130 (22032): Invalid JSON text: "Expect a value here." at position 0 in value

(or column) 'some random text'.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

JSON type

SELECT DISTINCT

feature->"$.type" as json_extract

FROM features;

+--------------+

| json_extract |

+--------------+

| "Feature" |

+--------------+

1 row in set (1.25 sec)

Unindexed traversal of 206K documents

TEXT type

SELECT DISTINCT

feature->"$.type" as json_extract

FROM features;

+--------------+

| json_extract |

+--------------+

| "Feature" |

+--------------+

1 row in set (12.85 sec)

Explanation: Binary format of JSON type is very efficient at
searching. Storing as TEXT performs over 10x worse at traversal.

Naive Comparison JSON Vs. TEXT

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

JSON_ARRAY_APPEND()

JSON_ARRAY_INSERT()

JSON_ARRAY()

JSON_CONTAINS_PATH()

JSON_CONTAINS()

JSON_DEPTH()

JSON_EXTRACT()

JSON_INSERT()

JSON_KEYS()

JSON_LENGTH()

JSON_MERGE()

JSON_OBJECT()

JSON_QUOTE()

JSON_REMOVE()

JSON_REPLACE()

JSON_SEARCH()

JSON_SET()

JSON_TYPE()

JSON_UNQUOTE()

JSON_VALID()

New! JSON Functions

Functions to CREATE, SEARCH, MODIFY and RETURN JSON values:

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

CREATE TABLE t1 (

id INT NOT NULL PRIMARY KEY auto_increment,

my_integer INT,

my_integer_plus_one INT AS (my_integer+1)

);

New! Generated Columns

id my_integer my_integer_plus_one

1 10 11

2 20 21

3 30 31

4 40 41

Column automatically
maintained based on your
specification

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

JSON and Generated Columns

• Available as either VIRTUAL (default) or STORED:

• Both types of computed columns permit for indexes to be added
as “functional indexes”
–Use ALTER TABLE… ADD INDEX(generated_column)

–Use virtual generated columns to index JSON fields!

ALTER TABLE features ADD feature_type varchar(30) AS (feature->>"$.type")

VIRTUAL;

Query OK, 206560 rows affected (4.70 sec)

Records: 206560 Duplicates: 0 Warnings: 0

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Have Both Schema + Schemaless!

• “Unstructured” is usually “semi-structured”
– Some fixed-schema columns can complement flexible-schema JSON

– Best of both worlds performance and flexibility

CREATE TABLE pc_components

(

id INT NOT NULL PRIMARY KEY,

description VARCHAR(60) NOT NULL,

vendor VARCHAR(30) NOT NULL,

serial_number VARCHAR(30) NOT NULL,

attributes JSON NOT NULL

);

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

New! NoSQL

• Fluent API, method chaining, stateless sessions

• CRUD for Collections of Documents and Tables
– Documents as simple basic domain objects

– Search expressions match SQL SELECT expressions

• Implemented in MySQL Shell & MySQL X DevAPI Connectors

– Javascript

–Python

–C#

– Java

–C++

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Node.js Example

// Create a new collection

db.createCollection('myCollection').then(function(myColl)) {

// Insert a document

myColl.add({ name: 'Sakila', age: 21 }).execute();

// Insert several documents at once

myColl.add([

{ name: 'Sastry', age: 45 }

{ name: 'Nicolas', age: 25 }

]).execute();

});

var myDocs = myColl.find('name like :name').bind('name', 'S%').execute();

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Tables or Collections?

• A collection is a table with 2+ columns:
– Primary key: `_id`

– JSON document: `doc`
• The document’s `_id` field can be supplied or automatically generated as UUID

–This field is also used to populate the primary key

• Can add extra columns and indexes to a collection

• SQL, NoSQL, tables, collections, all can be used simultaneously

• Operations compatible with replication

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

SHOW CREATE TABLE `myCollection`\G

Table: myCollection

Create Table: CREATE TABLE `myCollection`

(

`doc` json DEFAULT NULL,

`_id` varchar(32) GENERATED ALWAYS AS

(json_unquote(json_extract(`doc`,'$._id')))

STORED NOT NULL,

PRIMARY KEY (`_id`),

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

“High Availability becomes a core
first class feature of MySQL!”

InnoDB Cluster

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

S1 S2 S3 S4 S…

M

M M

MySQL Connector

Application

MySQL Router

MySQL Connector

Application

MySQL Router

MySQL Shell

HA

Sh
ar

d
 1

S1 S2 S3 S4 S…

M

M M

MySQL Connector

Application

MySQL Router

HA

Sh
ar

d
 2

MySQL Connector

Application

MySQL Router

…

Long Term Goal: Automatically Sharded Document Store

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

MySQL Document Store

✔ Built on Proven SQL/InnoDB/Replication

✔ Schema-less/Relational/Hybrid

✔ ACID/Transactions

✔ CRUD/JSON/Documents

✔ NoSQL and SQL

✔ Modern/Efficient Protocol

✔ SQL Queries/Analytics over JSON Documents

✔ Transparent and Easy HA/Scaling/Sharding

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

MySQL K/V Store

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Memcached Plug-in for InnoDB

m
y
s
q
l
d

InnoDB storage engine

MySQL Server

InnoDB API

innodb_memcached

Handler API

optional local cache

Memcached plug-in

Clients and Applications

SQL Memcached protocol

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

InnoDB Memcached Plug-in Tables
mysql> USE innodb_memcache;

mysql> SHOW TABLES;

+---------------------------+

| Tables_in_innodb_memcache |

+---------------------------+

| cache_policies |

| config_options |

| containers |

+---------------------------+

mysql> USE test;

mysql> SHOW TABLES;

+----------------+

| Tables_in_test |

+----------------+

| demo_test |

+----------------+

mysql> SELECT * FROM

innodb_memcache.containers\G

************* 1. row *************

name: aaa

db_schema: test

db_table: demo_test

key_columns: c1

value_columns: c2

flags: c3

cas_column: c4

expire_time_column: c5

unique_idx_name_on_key: PRIMARY

mysql> SELECT * FROM

test.demo_test;

+----+------------------+------+------+------+

| c1 | c2 | c3 | c4 | c5 |

+----+------------------+------+------+------+

| AA | HELLO, HELLO | 8 | 0 | 0 |

+----+------------------+------+------+------+

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Basic Memcached Operations

• All language interfaces support the following methods for storing and retrieving cache
information:

Method Purpose

get(key) Retrieves the value for key if the key exists

set(key, value,

[expiry])

Sets existing key to provided value, or adds a new

item if the key does not exist

add(key, value,

[expiry])
Adds a new key-value pair to cache

replace(key, value,

[expiry])

Replaces the value associated with the key with the
specified value

delete(key, [time]) Deletes the key-value pair

incr(key, [value]) Adds 1 or value to the value for specified key

decr(key, [value]) Subtracts 1 or value from the value for specified key

flush_all() Expires all items in the cache

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

MySQL K/V Store

✔ Built on Proven SQL/InnoDB/Replication

✔ Schema-less/Relational/Hybrid

✔ ACID/Transactions

✔ CRUD/JSON/Documents

✔ Memcached and SQL

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Mobile MySQL

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Geospatial Support (GIS)

• Spatial indexing in InnoDB
– R-Tree bounding box implementation

– Fully transactional support

– Currently Eucledian plan, more later

• GeoHash (B-Tree indexing)

• GeoJSON format

CREATE TABLE events

(

name VARCHAR(100),

date TIMESTAMP,

location GEOMETRY,

SPATIAL KEY i_location(location)

);

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Choosing The Nearest Event

SELECT

name,

venue,

description,

date,

thumbnail,

ST_distance_sphere(POINT(@X,@Y), location) AS distance

FROM

events

ORDER BY distance;

SPATIAL KEY column

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Choosing The Nearest Event Within 1 Mile

SELECT

…

ST_distance_sphere(POINT(@X,@Y), location) AS distance

FROM

events

WHERE

ST_Contains(ST_MakeEnvelope(POINT(@X+(1/69),@Y+(1/69)),

POINT(@X-(1/69),@Y-(1/69))),

location)

ORDER BY distance;

Only locations within
square bounding box

69 miles per degree

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Agile Deployment

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Containers

“A container image is a lightweight, stand-alone, executable package of a
piece of software that includes everything needed to run it: code, runtime,
system tools, system libraries, settings. Available for both Linux and Windows
based apps, containerized software will always run the same, regardless of
the environment. Containers isolate software from its surroundings, for
example differences between development and staging environments and
help reduce conflicts between teams running different software on the same
infrastructure.”

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Making Your Own Containers

Dockerfile – where you define the container (also corresponding CLI arguments)

– ARG : arguments for use within the Dockerfile

– ENV : set environment variables for the container

– RUN : run command inside the container

– VOLUME : define volumes/mount points in the container

– ADD / COPY: add/copy files from the host to the container

– ENTRYFILE : where you define what’s run in the container when it starts

– CMD : the process to run inside the container

– EXPOSE : expose ports from the container

– HEALTHCHECK : exec something periodically to check the health of the container

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

• Official Server Release product
– Part of each release, e.g. 5.7.20

– Community and Enterprise

– Fully supported

• Containers for all products
– MySQL (NDB) Cluster

– InnoDB Cluster

– Router, Shell, Workbench, Utilities, …

Official MySQL Containers

MySQL Enterprise Edition

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Thank you!

Nicolas De Rico

nicolas.de.rico@oracle.com

