
Marius Pirvu, IBM Runtime Technologies
Nov 13, 2017 - mpirvu@ca.ibm.com

Performance
Beyond Throughput:
An OpenJ9 Case Study

Important disclaimers

 THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY.

 WHILST EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION
CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED.

 ALL PERFORMANCE DATA INCLUDED IN THIS PRESENTATION HAVE BEEN GATHERED IN A CONTROLLED
ENVIRONMENT. YOUR OWN TEST RESULTS MAY VARY BASED ON HARDWARE, SOFTWARE OR
INFRASTRUCTURE DIFFERENCES.

 ALL DATA INCLUDED IN THIS PRESENTATION ARE MEANT TO BE USED ONLY AS A GUIDE.

 IN ADDITION, THE INFORMATION CONTAINED IN THIS PRESENTATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM, WITHOUT NOTICE.

 IBM AND ITS AFFILIATED COMPANIES SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT
OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.

 NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, OR SHALL HAVE THE EFFECT OF:
– CREATING ANY WARRANT OR REPRESENTATION FROM IBM, ITS AFFILIATED COMPANIES OR ITS

OR THEIR SUPPLIERS AND/OR LICENSORS

2

Eclipse OpenJ9: an open source JVM

J9
JVM

Open source projects at Eclipse
Foundation

2016/2017 and on

Closed source development
at IBM

1997 – 2016/2017

OMR

OpenJ9 consumes OMR

March
2016

Sep
2017

3

 Very open. Dual license: Eclipse Public License v2.0 and Apache 2.0

 Very easy for anyone to contribute
– github repositories:

 https://github.com/eclipse/openj9
 https://github.com/eclipse/omr

– Prebuilt binaries:
 https://adoptopenjdk.net/nightly.html?variant=openjdk9-openj9

 Performance
– Excellent performance for a wide variety of metrics important in the cloud
– Hardware exploitation for x86, Power and Z mainframes
– Focus on large applications rather than microbenchmarks

Why use Eclipse OpenJ9?

4

OpenJDK9 with OpenJ9

OpenJDK9

OpenJDK9OpenJDK9

HotSpotHotSpot

OpenJDK9

Hotspot

5

OpenJ9 ≠ Java9

OpenJDK8 with OpenJ9 coming soon!

Performance is about more than just throughput

 Performance means different things to different people

 OpenJ9 pays attention to many other metrics important to customers:
– start-up time
– footprint
– ramp-up
– response time
– CPU

 Different goals  different design decisions

 Must keep a balance  make sensible trade-offs

6

 Start-up time – 37% improvement

 Footprint – 44-60% improvement

 Behavior at idle – 55% improvement

 Ramp-up in a resource constrained environment

 Response time – 10x improvement

 Performance monitoring tools

Agenda

7

Start-up time

 Start-up time == time needed for your server application to become operational

 Important for:
– developers
– scaling out operations
– outages (planned or not)

 General characteristics of a start-up phase
– A fair amount of class loading
– A large amount of interpretation activity (jitting takes time!)

 OpenJ9 solutions
– Shared class cache technology and dynamic Ahead-of-Time (AOT) compilation
– Specialized running mode: -Xquickstart

8

Eclipse OpenJ9 shared class cache technology

 Memory mapped file used to cache:
– ROM classes (pre-processed .class files)
– AOT compiled code
– Interpreter profiling data

 Population of the cache happens naturally and transparently at runtime
– Distinction between ‘cold’ and ‘warm’ runs

 Enabled with –Xshareclasses

 Dynamic AOT compilation
– Relocatable format
– AOT loads are ~100 times faster than JIT compilations
– More generic code  slightly less optimized

 Generate AOT code only during start-up
 Recompilation helps bridge the gap

9

-Xquickstart mode

 Use cases
– User cares a lot about start-up time
– Very short running applications
– Interactive, graphical applications

 Under the hood
– Cheaper JIT compilations, but less optimized code
– Interpreter profiler is disabled

 Somewhat similar to “-client” from HotSpot

10

Start-up performance with Eclipse OpenJ9

0.00

0.20

0.40

0.60

0.80

1.00

1.20

OpenJDK9 with
HotSpot

OpenJDK9 with
OpenJ9

OpenJDK9 with
OpenJ9 w/AOT

OpenJDK9 with
OpenJ9 w/AOT -

Xquickstart

N
or

m
al

iz
ed

 s
ta

rt
-u

p
tim

e

DayTrader3 Start-up Time Comparison
(all runs with -Xmx1g)

37% 49%

11

Benchmark: https://github.com/WASdev/sample.daytrader3
More details: https://github.com/eclipse/openj9-website/blob/master/benchmark/daytrader3.md

Footprint

 Myth: machines have plenty of RAM, so optimizing for footprint is not worthwhile

 Reality: application footprint is very important to:
– Cloud users: pay for resources
– Cloud providers: higher app density means lower operational costs

 Trends:
– Virtualization  big machines partitioned into many smaller VM guests
– Microservices  increased memory usage; native JVM footprint matters

 Distinction between:
– On disk image size – relevant for Cloud Foundry
– Virtual memory footprint – relevant for 32-bit applications
– Physical memory footprint (RSS)

In the cloud footprint is king

12

Footprint after start-up comparison

 After start-up, OpenJ9 uses 60% less physical memory than HotSpot

13

0.00

0.20

0.40

0.60

0.80

1.00

1.20

OpenJDK9 with
HotSpot

OpenJDK9 with
OpenJ9

OpenJDK9 with
OpenJ9 w/AOT

OpenJDK9 with
OpenJ9 w/AOT -

Xquickstart

N
or

m
al

iz
ed

 J
V

M
 R

e
si

de
nt

 S
et

 S
iz

e
DayTrader3 Footprint (after start-up) Comparison

(all runs with -Xmx1g)

60%

Footprint during load comparison

 During load, OpenJ9 uses 44% less physical memory than HotSpot

 Further savings when multiple JVMs connect to the same shared class cache

14

0 300 600 900 1200 1500 1800

JV
M

 R
es

id
e

nt
 S

et
 S

iz
e

Time (sec)

DayTrader3 Footprint (during load) Comparison
(all runs with -Xmx1g)

OpenJDK9 with HotSpot

OpenJDK9 with OpenJ9

OpenJDK9 with OpenJ9
w/AOT

44%

Footprint Testimonials

15

Behavior at idle

 Undesirable effects of idle JVMs:
– May consume a small amount of CPU
– May create some churn at the hypervisor level (swapping in/out guest VMs)
– May take the CPU out of low power mode
– May hold on to garbage memory that they don’t really need

16

 Important for cloud in high application density scenarios
(over commit)

 anthesisgroup.com: “Some 30 percent of VMs are zombies”
https://anthesisgroup.com/wp-content/uploads/2017/03/Comatsoe-Servers-Redux-2017.pdf

Idle behavior in Eclipse OpenJ9

 Idle state detection mechanism

 Reduced frequency of sampling thread in idle state

 Reduced optimization level for JIT compiler during idle state

 Free the garbage in the heap and disclaim physical memory pages after some time in idle
state

17

CPU and wakeups of idle JVM

OpenJDK9 with HotSpot – 0.168% CPU

Summary: 84.7 wakeups/second, 0.0 GPU
ops/seconds, 0.0 VFS ops/sec and 0.3% CPU use.
Usage Events/s Category Description
0.9 ms/s 44.2 Process /sdks/OpenJDK9-
x64_Linux_20172509/jdk-9+181/bin/java
119.5 µs/s 20.0 Process [xfsaild/dm-1]
138.6 µs/s 7.4 Timer tick_sched_timer
10.5 µs/s 1.6 Process [rcu_sched]
190.4 µs/s 1.5 Timer hrtimer_wakeup

OpenJDK9 with OpenJ9 – 0.111% CPU

Summary: 38.5 wakeups/second, 0.1 GPU
ops/seconds, 0.0 VFS ops/sec and 0.2% CPU use
Usage Events/s Category Description
681.2 µs/s 19.2 Process /sdks/OpenJDK9-
OPENJ9_x64_Linux_20172509/jdk-9+181/bin/java
58.3 µs/s 5.2 Timer tick_sched_timer
21.9 µs/s 3.6 Process [rcu_sched]
39.3 µs/s 2.0 Timer hrtimer_wakeup
157.1 µs/s 1.0 kWork ixgbe_service_task

 Analyze behavior of idle OpenLiberty server with powertop tool

18

 OpenJ9 triggers ~55% fewer wakeups than HotSpot

Footprint of idle Eclipse OpenJ9

-XX:+IdleTuningGcOnIdle

19

Benchmark: https://github.com/blueperf/acmeair
More details: https://developer.ibm.com/javasdk/2017/09/25/still-paying-unused-memory-java-app-idle

CPU constrained environments

 Virtual machines with 1 CPU are not that uncommon

 Compilation threads contending for CPU with application threads; side effects:
– Slow ramp-up
– Possible jitter in server response time

 OpenJ9 solutions to reduce CPU consumption:
– Dynamic AOT compilation (enabled with -Xshareclasses)
-Xtune:virtualized

 More conservative JIT optimization. Subdued recompilation.
 Saves compilation CPU (20-30%) at the expense of a 2-3% throughput loss
 Some reduction in footprint
 Works well in conjunction of dynamic AOT (generate AOT code as much as

possible - if enabled)

20

Ramping-up in a CPU constrained environment

 -Xtune:virtualized and AOT good for CPU constrained situations and
short running applications

21

0 200 400 600 800 1000 1200 1400 1600

T
h

ro
ug

hp
ut

 (
tr

a
ns

ac
tio

ns
/s

ec
)

Time (sec)

Daytrader3 Ramp-up Comparison
All runs with -Xmx1G. JVM pinned to 1 core

OpenJDK9 with HotSpot

OpenJDK9 with OpenJ9

OpenJDK9 with OpenJ9 w/AOT
-Xtune:virtualized

Response time

 Jitter in response time due to:
– JIT compilation overhead (when JVM is CPU constrained)
– GC operation – “stop the world”

 Addressing the GC pauses in OpenJ9
– Metronome – soft real-time GC policy

 GC pauses configurable to as low as 1ms
– Pause-less GC feature for zOS

 GC can run concurrently with application
 Hardware support in z14 – Guarded Storage Facility
 Enable with -Xgc:concurrentScavenge

22

z14: Pause-less Garbage Collection
Java Store Inventory and Point of Sale Application

Java GC-tuning made easier

High scavenge pause times made this
application a candidate for Pause-less GC

 Up to 3.4x better throughput for response-
time constrained Service Level Agreements
(SLAs)

 Up to 10x better average GC pause-times

IBM Monitoring and Diagnostic Tools - Garbage
Collection and Memory Visualizer

Enable Pause-less GC with:
• IBM Java 8 SR5 or newer (OpenJ9 included)
• IBM z14’s Guarded Storage Facility
• z/OS 2.3 or z/OS 2.2 with APAR OA51643

JVM option: -Xgc:concurrentScavenge

23

Performance monitoring tools

 Many low level performance tools exist
– CPU: top, htop, vmstat, pidstat, mpstat, sar, nmon
– Memory: sar, dstat, slabtop, free, nmon
– Disk activity: iotop, iostat, sar, nmon
– Network: ping, iftop, netstat, tcp, nicstat,
– Profilers: perf, oprofile, tprof

 OpenJ9 performance tools
– Health Center
– Garbage Collector and Memory Visualizer (GCMV)

24

Health Center

 Live monitoring tool with low overhead
(<1%)

 Provides insight into your application
behavior with visualization

 Diagnoses potential problems and
makes recommendations

 Powerful API allowing embedding of
Health Center into other applications

25

Health Center

 Tool is composed of two parts
– Agent that collects data from running JVM
– Eclipse based client that connects to the

agent (typically running remotely)

26

 The agent ships with all IBM SDK for Java releases

 Latest version of agent available from within Health
Center client

 Full usage instructions provided in the client Help topics

 Monitoring enabled with command line option
java –Xhealthcenter HelloWorld

 Late attach possible

 Headless mode - collection without connecting the GUI

Health Center

 Provides visualization and monitoring in the following areas
– Garbage collection
– Method profiling
– Lock analysis
– Threading
– Classes
– Environment
– Memory
– CPU
– I/O
– Network

27

Health Center – Garbage collection perspective

28

Health Center – Method Profiling perspective

 Always-on profiling
– No bytecode instrumentation, no recompilation

 Identifies hottest methods

 Full callstacks to identify callers and callees

29

Health Center – Locking perspective

 Always-on lock
monitoring

 Helps identify points of
contention in the
application

30

Health Center – Threads perspective

 List of current threads and states

 Number of threads over time

 Detection of contended monitors

 Deadlock detection and analysis

31

Health Center – Class loading perspective

 Shows all loaded classes

 Shows timeline of loading events

 Identifies shared classes

 Shows number of unloaded
classes

32

Health Center – Environment reporting

 Detects invalid Java options

 Detects options which may hurt
performance

 Useful for detecting configuration-
related problems

33

Health Center – Other perspectives

34

Garbage Collector and Memory Visualizer (GCMV)

 Visualize a wide range of GC data and Java heap statistics over time

 Recommendations for optimizing GC

 Detect memory leaks

 Visualize physical and virtual memory of the JVM

 Extracts information from:
– GC verbose logs – for Java heap
– ps (linux, z/OS), svmon (AIX) or perfmon (Windows) tools – for native footprint

35

GCMV data categories

36

GCMV snapshots
 Analysis and recommendations

– Analysis can be limited using cropping

37

 Graphical display of data
– Many metrics to choose from
– Allows zoom, cropping and change of units

Conclusion

Eclipse OpenJ9 == The better JVM for the cloud

38

Questions?

Marius Pirvu
mpirvu@ca.ibm.com

39

Resources

40

 Description: https://www.eclipse.org/openj9
 Get involved: https://github.com/eclipse/openj9

https://github.com/eclipse/omr
 Build your own: https://www.eclipse.org/openj9/oj9_build.html
 Download OpenJ9 binaries: https://adoptopenjdk.net/?variant=openjdk9-openj9
 Performance: https://github.com/eclipse/openj9-website/blob/master/benchmark/daytrader3.md
 Links to benchmarks:

– Daytrader3: https://github.com/WASdev/sample.daytrader3
– AcmeAir: https://github.com/blueperf/acmeair

