Performance
Beyond Throughput:
An Opend9 Case Study

Marius Pirvu, IBM Runtime Technologies
Nov 13, 2017 - mpirvu@ca.ibm.com

nnnnnnnnnnnnnn

Important disclaimers

= THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY.

» WHILST EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION
CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS 1S”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED.

» ALL PERFORMANCE DATA INCLUDED IN THIS PRESENTATION HAVE BEEN GATHERED IN A CONTROLLED
ENVIRONMENT. YOUR OWN TEST RESULTS MAY VARY BASED ON HARDWARE, SOFTWARE OR
INFRASTRUCTURE DIFFERENCES.

= ALL DATA INCLUDED IN THIS PRESENTATION ARE MEANT TO BE USED ONLY AS A GUIDE.

= |IN ADDITION, THE INFORMATION CONTAINED IN THIS PRESENTATION IS BASED ON IBM'S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM, WITHOUT NOTICE.

= |IBM AND ITS AFFILIATED COMPANIES SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT
OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.

= NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, OR SHALL HAVE THE EFFECT OF:
— CREATING ANY WARRANT OR REPRESENTATION FROM IBM, ITS AFFILIATED COMPANIES OR ITS
OR THEIR SUPPLIERS AND/OR LICENSORS

nnnnnnnnnnnnnnnnnnnnnn

Eclipse Opend9: an open source JVM

J9
JVM

Closed source development
at IBM
1997 — 2016/2017

J9

Opend9 co umes OMR

Do

Open source projects at Eclipse
Foundation
2016/2017 and on

Sep
2017

March
2016

Why use Eclipse Opend9?

= Very open. Dual license: Eclipse Public License v2.0 and Apache 2.0

= Very easy for anyone to contribute
— github repositories:
= https://github.com/eclipse/openj9
= https://github.com/eclipse/omr
— Prebuilt binaries:
= https://adoptopenjdk.net/nightly.html?variant=openjdk9-openj9

= Performance
— Excellent performance for a wide variety of metrics important in the cloud
— Hardware exploitation for x86, Power and Z mainframes
— Focus on large applications rather than microbenchmarks

OpendDK9 with Opend9

OpenJDK9

OpenlDK9
Opend9 # Java9

Oper()9) OpenJDK8 with OpenJ9 coming soon! &
cal

Performance is about more than just throughput

Performance means different things to different people

Opend9 pays attention to many other metrics important to customers:
— start-up time
— footprint
— ramp-up
— response time
- CPU

Different goals - different design decisions

Must keep a balance - make sensible trade-offs

Agenda

Start-up time — 37% improvement

Footprint — 44-60% improvement

Behavior at idle — 55% improvement

Ramp-up in a resource constrained environment

Response time — 10x improvement

Performance monitoring tools

nnnnnnnnnnnnnnnnnnnnnnn

Start-up time

Start-up time == time needed for your server application to become operational

Important for:
— developers
— scaling out operations
— outages (planned or not)

General characteristics of a start-up phase
— A fair amount of class loading
— A large amount of interpretation activity (jitting takes time!)

Opend9 solutions
— Shared class cache technology and dynamic Ahead-of-Time (AOT) compilation
— Specialized running mode: -Xquickstart

nnnnnnnnnnnnnnnnnnnnnnn

Eclipse Opend9 shared class cache technology

Memory mapped file used to cache:
— ROM classes (pre-processed .class files)
— AOT compiled code
— Interpreter profiling data

Population of the cache happens naturally and transparently at runtime
— Distinction between ‘cold’ and ‘warm’ runs

Enabled with —=Xshareclasses

Dynamic AOT compilation
— Relocatable format
— AOT loads are ~100 times faster than JIT compilations
— More generic code - slightly less optimized
= Generate AOT code only during start-up
= Recompilation helps bridge the gap

-Xquickstart mode

= Use cases
— User cares a lot about start-up time
— Very short running applications
— Interactive, graphical applications

= Under the hood
— Cheaper JIT compilations, but less optimized code
— Interpreter profiler is disabled

= Somewhat similar to “-client” from HotSpot

10

Start-up performance with Eclipse OpendJ9

DayTrader3 Start-up Time Comparison
(all runs with -Xmx1g)

1.20
()
£ 1.00
o
3080 37% 49%
S
® 0.60
i®)]
0]
N
T 0.40
£
2020
0.00
OpendDK9 with OpendDK9 with OpendDK9 with OpenJDKS9 with
HotSpot Opend9 Opend9 w/AOT Opend9 w/AOT -

Xquickstart

Benchmark: https://github.com/\WWASdev/sample.daytrader3
More details: https://github.com/eclipse/openj9-website/blob/master/benchmark/daytrader3.md

11

Footprint

Myth: machines have plenty of RAM, so optimizing for footprint is not worthwhile

Reality: application footprint is very important to:
— Cloud users: pay for resources
— Cloud providers: higher app density means lower operational costs

Trends:
— Virtualization - big machines partitioned into many smaller VM guests
— Microservices = increased memory usage; native JVM footprint matters

Distinction between:
— On disk image size — relevant for Cloud Foundry
— Virtual memory footprint — relevant for 32-bit applications
— Physical memory footprint (RSS)

In the cloud footprint is king

12 e :

Footprint after start-up comparison

DayTrader3 Footprint (after start-up) Comparison
(all runs with -Xmx1g)

-
o N
o O

o
o)
o

60%

v

OpendDKS9 with OpendDKS9 with OpendDKS9 with OpendDK9 with

O
o)
o

o
~
o

O
)
o

Normalized JVM Resident Set Size

O
o
S

HotSpot Opend9 Opend9 w/AOT Opend9 w/AOT -

Xquickstart

= After start-up, Opend9 uses 60% less physical memory than HotSpot

13

Footprint during load comparison

DayTrader3 Footprint (during load) Comparison
(all runs with -Xmx1g)

(0]
N
n
3 44%, —OpenJDK9 with HotSpot
g —OpenJDK9 with OpenJ9
)
(O]
o —OpenJDK9 with OpenJ9
= w/AOT
>
0 300 600 900 1200 1500 1800

Time (sec)

= During load, OpendJ9 uses 44% less physical memory than HotSpot

= Further savings when multiple JVMs connect to the same shared class cache

14

n - n Mark Stoodley @mstoodle - Oct 5 v
F O Ot p rI n t I e Stl m O n I a I S Save money with Eclipse @openjd running your Java code in half the footprint!

™ Mike Milinkovich & %
%] | Follow] v
@mmilinkov Mo 5

node.js has had a free ride because of the .
slow pace of *open* innovation in Java. With Porformance,opinizad

Eclipse @openj9 and Eclipse @vertx_project, 2x
Java can now compete on footprint in the
cloud. #thisishuge

smaller memory footprint™

Doug Schaefer @dougschaefer
Well, for fun set up a simple vert.x server w/ derby on Open)9 and it's at 60MB RES.

Smaller than Ghost, sqlite on node at T00MB. _(24)_/~ Q2 11 16) 18 i

Mark Hammons

) Ot 2017
()

7:51 AM - 12 Oct 2017 B
@ @MarkHammons

58 Retweets 95 Likes e o ‘ ° . e L Replying to @mstoodle @openjd
| can back up this claim. On a playframework
webapp i'm working on, openj9 and openjdk

Doug Schaefer .
° ? ¥ 9 have near same max speed. openj9 uses .6x

Follow] v

@dou _|_|_ \aefer
the ram.

Remember when my OpenJ9 VM was at 60MB Mark Hammons @\arkHammens - Oct 7 ¥

RES? Now it's under 40. Keeps getting i e i e W bR s
openjd also seems to return ram to the os more Wlllmglyr than openjdk. openjdk

Sma”er! Smart memOI’y ma nag ement. consumes more memaory till it reaches a good size for gc. 1/2

7:26 PM - 11 Dct 2017 Q1 ™ <& |

3 Likes ﬁ, . T Mark Hammons @MarkHammons - Oct 7 v

s) i "d i've watched the ram used by openj9 reported by my os peak at 800MB, then $ @

shrink to 730MB. Not something | see with openjdk! 2/2 ﬁ

Behavior at idle

= |mportant for cloud in high application density scenarios
(over commit)

= anthesisgroup.com: “Some 30 percent of VMs are zombies”
https://anthesisgroup.com/wp-content/uploads/2017/03/Comatsoe-Servers-Redux-2017.pdf

= Undesirable effects of idle JVMs:
— May consume a small amount of CPU
— May create some churn at the hypervisor level (swapping in/out guest VMs)
— May take the CPU out of low power mode
— May hold on to garbage memory that they don'’t really need

16

|dle behavior in Eclipse Opend9

|dle state detection mechanism

Reduced frequency of sampling thread in idle state

Reduced optimization level for JIT compiler during idle state

Free the garbage in the heap and disclaim physical memory pages after some time in idle
state

e

17

CPU and wakeups of idle JVM

18

= Analyze behavior of idle OpenLiberty server with powertop tool

OpenJDK9 with HotSpot — 0.168% CPU

Summary: 84.7 wakeups/second, 0.0 GPU
ops/seconds, 0.0 VFS ops/sec and 0.3% CPU use.
Usage Events/s Category Description

0.9 ms/s 44.2 Process /sdks/OpenJDK9-
x64_Linux_20172509/jdk-9+181/bin/java

119.5us/s 20.0 Process [xfsaild/dm-1]
138.6 us/s 7.4 Timer tick_sched_timer
10.5 us/s 1.6 Process [rcu_sched]
190.4 us/s 1.5 Timer hrtimer_wakeup

OpenJDK9 with Opend9 - 0.111% CPU

Summary: 38.5 wakeups/second, 0.1 GPU
ops/seconds, 0.0 VFS ops/sec and 0.2% CPU use
Usage Events/s Category Description
681.2 us/s 19.2 Process /sdks/OpenJDK9-
OPENJ9 x64 Linux_20172509/jdk-9+181/bin/java

58.3 ps/s 5.2 Timer tick_sched_timer
21.9 ys/s 3.6 Process [rcu_sched]

39.3 us/s 2.0 Timer hrtimer_wakeup
1571 us/s 1.0 kWork ixgbe_service task

= Opend9 triggers ~55% fewer wakeups than HotSpot

nnnnnnnnnnnnnnnnnnnnnnn

Footprint of idle Eclipse Opend9

250

-XX:+ldleTuningGcOnldle
200 -

. M —

o) + ~
:gu Arocess memory reduced during idle
—— Process Memo
: Pt i
= 100 — Java Heap
S0
0

active [active [active idle
+—p F>| -4 - |d1ﬂ-r4ne - -

Benchmark: https://github.com/blueperf/acmeair
More details: https://developer.ibm.com/javasdk/2017/09/25/still-paying-unused-memory-java-app-idle

Jo

CPU constrained environments

= Virtual machines with 1 CPU are not that uncommon

= Compilation threads contending for CPU with application threads; side effects:
— Slow ramp-up
— Possible jitter in server response time

= Opend9 solutions to reduce CPU consumption:

— Dynamic AOT compilation (enabled with -Xshareclasses)

-Xtune:virtualized
= More conservative JIT optimization. Subdued recompilation.
= Saves compilation CPU (20-30%) at the expense of a 2-3% throughput loss
= Some reduction in footprint
= Works well in conjunction of dynamic AOT (generate AOT code as much as

possible - if enabled)

20

nnnnnnnnnnnnnnnnnnnnnnn

Ramping-up in a CPU constrained environment

Daytrader3 Ramp-up Comparison
All runs with -Xmx1G. JVM pinned to 1 core

—OpenJDK9 with HotSpot
—OpenJDK9 with OpenJ9

—OpenJDK9 with OpenJ9 w/AOT
-Xtune:virtualized

Throughput (transactions/sec)

0 200 400 600 800 1000 1200 1400 1600
Time (sec)

= -Xtune:virtualized and AOT good for CPU constrained situations and
short running applications

21

Response time

= Jitter in response time due to:
— JIT compilation overhead (when JVM is CPU constrained)
— GC operation — “stop the world”

= Addressing the GC pauses in OpenJ9
— Metronome — soft real-time GC policy
= GC pauses configurable to as low as 1ms
— Pause-less GC feature for zOS
= GC can run concurrently with application
= Hardware support in z14 — Guarded Storage Facility
= Enable with -Xgc:concurrentScavenge

22 nnnnnnnnnnnnnnnnnnnnnnn

z14:. Pause-less Garbage Collection
Java Store Inventory and Point of Sale Application

23

Java GC-tuning made easier
High scavenge pause times made this
application a candidate for Pause-less GC

= Up to 3.4x better throughput for response-
time constrained Service Level Agreements
(SLAs)

= Up to 10x better average GC pause-times

Pause time

Variant

Mean

Minimum

Maximum

Total

time (seconds)

time (seconds)

time (seconds)

time (seconds)

no-pause-less-gcverbgc (2)

0.3

0.28

0.34

199

pause-less-gc.verbgc

0.03

0.01

0.04

541

Enable Pause-less GC with:

« |IBM Java 8 SRS or newer (Opend9 included)
* IBM z14’s Guarded Storage Facility

« 2z/OS 2.3 or z/OS 2.2 with APAR OA51643

JVM option: -Xgc:concurrentScavenge

035 ——ho-pause-less-grverbge (2}

= 025
=
£ p20
=
015
010

0,05

0.00

i, e TS WMWWWW

50,00

60:00

80,00

90:00

100:00

IBM Monitoring and Diagnostic Tools - Garbage
Collection and Memory Visualizer

Performance monitoring tools

= Many low level performance tools exist
— CPU: top, htop, vmstat, pidstat, mpstat, sar, nmon
— Memory: sar, dstat, slabtop, free, nmon
— Disk activity: iotop, iostat, sar, nmon
— Network: ping, iftop, netstat, tcp, nicstat,
— Profilers: perf, oprofile, tprof

= Opend9 performance tools
— Health Center
— Garbage Collector and Memory Visualizer (GCMV)

24

Health Center
@. eclipse

' m Niaro
%; a rketjd l aC %_.l MY MARKETPLACE ~ ADD CONTENT ~ MORE~

Live monitoring tool with low overhead
(<1 OA)) HOME / MARKETPLACE / TOOLS (1480)

/ 1BM MONITORING AND DIAGNOSTIC TOOLS - HEALTH CENTER

Provides insight into your application

behavior with visualization IBM Monitoring and Diagnostic Tools - @&

Health Center

Diagnoses potential problems and ‘
makeS reCommendatlonS - & Details Screenshots Metrics Errors

External Install Button

= Powerful API allowing embedding of ADVANCED %6 00
. . . SEARCH »
Health Center |nt0 Other appl|cat|ons < Install Health Center is a diagnostic tool for monitoring the
— status of a running Java or Node.js application. Heath
'SEARCH a! (2 A Center uses a small amount of processor time and
memory, and can open some log and trace files for
analysis.

e

25

Health Center

Health Center client

Tool is composed of two parts
— Agent that collects data from running JVM
— Eclipse based client that connects to the
agent (typically running remotely)

The agent ships with all IBM SDK for Java releases

Latest version of agent available from within Health ==

Center client s i
= Full usage instructions provided in the client Help topics —
Java MaTT maTT n.nﬁlrll-.m "
= Monitoring enabled with command line option R e
java —Xhealthcenter HelloWorld %E‘ - { s
agent
= Late attach possible -
= Headless mode - collection without connecting the GUI { M y L i i

26 nnnnnnnnnnnnnnnnnnnnnnn

Health Center

= Provides visualization and monitoring in the following areas
— Garbage collection
— Method profiling
— Lock analysis
— Threading
— Classes
— Environment
— Memory
- CPU
- 1/0
— Network

27

Health Center — Garbage collection perspective

28

[® Status 22 T ectio ==

ik cpu
(& Classes
@ Environment

i) Garbage Collection
&l vo

{8 Locking

i Method Profiling

]

3 CRON NN

RN <N CNON <N

Native Memory
,ﬁ, MNetwork
bz Threads

] Analysis and Recommen... &2 = O

The application seems to be using £

some quite large objects, The largest
request which triggered an allocation failure
was for 2048 KB.

@ The mean occupancy in the nursery is

16%. This is low, so the gencon policy is
probably an optimal policy for this
workload.

@ The memory usage of the application

does not indicate any obvious leaks. v

4% Heap and pause ... 52 [Object allocations [=] Samples by requ.. [=] Samples by object = B8
—Used heap (after collection)
——Heap size
-------- Pause time
gof——
00—t — —50.0
o 60.0] —40.0 -
£ 500 £ -
]
"E 40.0 —30.0 .§.
7 300 ' 200 =
200 |] T -
10.0 e H |Il--i; o
0.0 - 0.0
0:00 1:00 2:00 300 4:00
elapsed time (minutes)
B Summary 33 o[Call hierarch = 0
3 ()
Concurrent collection count 16
GC Mode Default (gencon)
Global collections - Mean garbage collection pause 10.6 ms
Global collections - Mean interval between collections 13992 ms
Global collections - Number of collections 18
Largest memory request 2048 KB
Mean garbage collection pause 141 ms
Mean interval hetween collectinns N2 ms a &&

1BM Runtime Technologies

Health Center — Method Profiling perspective

= Always-on profiling
— No bytecode instrumentation, no recompilation

» |dentifies hottest methods

= Full callstacks to identify callers and callees

@ Samples ove.. & Invocation p... @ Called meth... | @ Timeline 32 | [Methodtrace.. = O

HashMap.put()
0:00 1:00 2:00 3:00 400
elapsed time (minutes)
@ Samples ove.. @ lnvocation p... | @ Called meth... 32 | @ Timeline [Methodtrace.. = 0O

Methods called by HashMap.put()

@} Sample based profile 53 =
Filter methods: | Apply | Clzar
Samples | Self (%) Self Tree(3%) Tree Method ~
2472 2.59 2.84 java.util. HashMap.hash(java.lang.Object)
1359 143 349 | java.util HashMap.put(java.lang. Object, java.lang.Object)
1226 1.29 137 java.util. HashMap.putVal(int, java.lang.Object, java.lang.Ob
219 0.86 1.05 com.ibm.db2 joctdab.cl)
791 0.83 2.09 org.apache jasper.runtimeJspWriterlmplwrite{char(], int, ir
745 0.78 1.06 java.util HashMap.getMode(int, java.lang.Object)
718 0.75 0.88 com.ibm.ws.tcpchannelinternal SocketRWChannelSelector
652 0.68 1.01 org.apache.myfaces.application.ApplicationimplinternalCr v
£ >

@ Samples ove.. % | @ Invocation p... @ Called meth.. @ Timeline [Methodtrace. = O

number (#)

1:00

2:00 3:00
elapsed time (minutes)

@) Samples ove.. | @ Invocation p... 33 | @ Called meth.. @ Timeline [Method trace.. = O

400

Metheods that call HashMap.put()

~ (@) HashMap.putVal (38.443%)
@ HashMap.resize (6.19%)
~ (D String.equals (0.078%)
@ String.regionMatches (100%)
@ ClassSMethodinfo.equals (0.078%)
~ (@ HashMap.hash (20.65%)
(@ SelectimpliSelectResultSCachedColumnAliasKey.hashCode (4.08%)

29

~ (@ HashMap.put ~
+) ManagedBeanResolver.createManagedBean (21.22%)
~ () ManagedBeanReschver.getValue (100%)
v (@ CompositeELResolver.getValue (100%)
> @ FacesCompositeELResolver.getValue (100%)
@ SelectimplSSelectResult.containsinternal (7.6%)
@ HashSet.add (7.39%)
@ SRTSendletRequestsethttribute (6.82%)

:%@

1BM Runtime Technologies

Health Center — Locking perspective

[# Status 33 TF Connectior = |

= Always-on lock
monitoring

= Helps identify points of
contention in the
application

30

@® Environment

M Garbage Collection

L‘;‘j Locking
1% Method Profilin

@

.-ﬂ; MNetwork
Kz Threads

"
o

)O00RPOrR000

= Analysis and Recommen... 22 = O

"[D00OTF2720071F18]

com/ibm/ws/classloading/internal/Thread
ContextClassLoader@00000000E1CFIBTE
(Object)” had a high miss percentage
indicating that 84% of attempts by a thread
to own the lock (when the requesting
thread did not already own it) required the
thread to wait. Reducing contention on this
lock could result in a perfformance
improvement.

"IDNONTEI 71/ TGAT

~

|lis Monitors bar chart 53

Inflated Java Monitors

#-= 6

Slow (height) and % miss (color)

T U 2 U =2 U 2 E &E 5§ @ O E £E oD E OO o o
2 s283¢gsS5s588:i5835858¢@¢¢9
501 % £ & & ¢ L g5 T ESEETLEEE
] S T s 235 2225222322z E
R R R E R R
= 3 : £ 2 z & T
T 200 x"‘E‘*\-\ "_éx 3&‘%&? Em‘g?‘gaigg
2 M E T E 2 EoOF £ E & & F - 8 F 8 25 5
E EHE:s 338253333333 3 3 3
" = =
A | B R R E S S R
< = = = = o = e @ T ey o
3 [E R o 2 o T W pmm o @ ® o x xm &
g S 825 33233 L5829588 %
el | EEREERERESNEEE NS KW
° — L 2 8 2 222 83 8 235 uo 8222 2 8
BEEERREE L ERERREERERERERR
§ f‘\lﬁl N NN N NN NN NN NN NN N L T o 5 o I
R L P
EBES 2 2 2 8 8 8 2838 8 888 8 8 8
=4 = = = _ . e = o D 2B S D e 28 B e
0
Moenitor
(&) Monitors i3 2 y= 0
Inflated Java Monitors
| Smiss Gets Slow Recursive % util Average hold time Name e
24 2448 260 1358 0 1118485 [DD0O7F272405F688] com/ibm/ws,
| 36 768 179 270 0 905595 [0DD07F2718232798] com/ibm/ws,
| 46 496 67 351 0 826043 [0D007F2720071DB8] com/ibm/we
| 84 121 51 60 0 2285327 [0D0O7F2720071F18] com/ibm/ws,
| 1 3764 4 0 0 6737 [00D07F27240B56B8] java/util/Has «

>

w0

1BM Runtime Technologies

Health Center — Threads perspective

B Current threads £2 = 0
Thread name filter: | Apply | | Clear
= List of current threads and states Viedlisine Tt
Scheduled Executor-thread-1 TIMED_WAITING
. LargeThreadPool-thread-1 WAITING
= Number of threads over time BV WAITHG
Timer-1 WAITING
Health Center (methoddictionary) RUMMAELE
= Detection of contended monitors e HeIERE
Inbeund Write Selector.] RUMNMABLE
1 1 Shared TCPChannel NonBlocking A... RUMMABLE
|
DeadIOCk deteCtlon and analySIS LargeThreadPool-thread-3 RUMMABLE
MemoryM¥Bean notification dispat.. RUNMABLE
MNotifyHelper WAITING
FlushHelper WAITIMG
CheckpointHelper WAITING
UniquekeyRangeManager WAITING
sib.5pill Dispatcher-283D8073DECECE... WAITING
sib. SpillDispatcher-83D8073DECECE.. WAITING
sib. Spill Dispatcher-83D8073DECECE.. WAITING W
€ >

[Thread stack 23

k& Number of threads 2 = O

Mumber of threads

number (#)

0:00 1:00 2:00 3:00 4:00
elapsed time (minutes)

Je# Thread details 23 =: 0

Cwned menitor name

com.ibm .ws.threadl'ng.intemaI.EUundedEufFerSGetQueueLock

£ >

Contended monitor
com.ibm.ws.threading.internal BoundedBufferSGetQueuel ock®

Contended menitor owner

~v [LargeThreadPool-thread-1

~ (@ java.lang.Object.wait(Native Method]
v [D javalang.Object.wait{Object.java:201)
. (D) com.ibm.ws.threading.internal.BoundedBufferwaitGet_(BoundedBuffer.java:177)

31

:@r@@

1BM Runtime Technologies

Health Center — Class loading perspective

(® Class loading timeline ©2 =

32

Shows all loaded classes
Shows timeline of loading events
|dentifies shared classes

Shows number of unloaded
classes

0:00

£® Classes loaded 27 | L@ Class histogram

Filter classes:

Time [Baded
0:00 minutes
0:00 minutes
0:00 minutes
0:00 minutes
0:00 minutes
0:00 minutes
0:00 minutes
0:00 minutes

L 4

1:.00

2:00 3:00 4:00
elapsed time (minutes)

=

&

Apply Clear

Shared cache Classname

No
No
No
No
No
MNo
No
No

java/io/FileQutputStream$1
com/ibm/tools/attach/targ
com/ibm/ws/kernel/boot/L
com/ibm/wsspi/kernel/emk
com/ibm/ws/kernel/boot/C
com/ibm/ws/kernel/boot/L
com/ibm/ws/kernel/boot/R
com{ibm/ws/kermnel/boot/c

>

~

W

Health Center — Environment reporting

= Detects invalid Java options §5 Configuration 52 [} Runtime properties [Security properties [Environment variables = B
= Detects options which may hurt Property : Value
v Boot classpath
pe rfo rm a n Ce i /home/mpireu/sdks/pxab480sr5-20170905_01/jre/lib/amd6d/compre:
. . . w Classpath
= Useful for detecting configuration- /opt/IBM/OpenLiberty-20170823/liberty/bin/tools/ws-server jar./opt/
» Command line
related problems ">, Dump options

| » Runtime environment parameters
» Ulimit parameters

< >
®, Runtime environment 53 = B i System 2 =
Property < Value Al Property & Value
{ Agent library build date Sep 42017 12:02:2(Architecture amd6d
Full version 8.0.5.0 - pxab480sr3 Host name vybridgedocker
Health Center Agent version 3.0.13,20170904 Number of available processors 8
Java home /home/mpirvu/sdk Operating system Linux
Name IBM JS VM Operating system version 3.10.0-514.26.2.el7.
Process id 2959
Vendor IBM Corporation
Version 1.8 v
< > < >

el

Health Center — Other perspectives

] Mative memory usage 53 = Bl CPU usage 2 = B | [Filesopen 32 | 12| File /O |
—Process Virtual Memary —verall system use 200
----- Process Physical Memory -----Application use -
%gg . _ . : i ~hiethads prafiled § 150
= =Tt 1 1 1000 : : 100 £
= 4000 s ot s o, o0 - i &
= 3000 | I ! | ! ! £ am Fh e By “lay m = 100
S 2000 T i T i i f T ; L o
" 1000 | ! | ! | | = o Eid - E o
S S S E a0 0 5 2
012 024 036 048 100 112 200 20 = B
elapsed time (minutes) o
1:00 200 200 4:00 L] 1:00 Z:DEI 3:'[:’0 4:00
elapsed time (minutes) elapsed time (minutes)
) Mative memory t.. B2 Runtimenativem.. = O
_ & Sockets open 33 | Jy Network /O = [/ & Openfile details i3 8
Description Min Size Latest Size Max ™ - - s
. = ile name filter: Apply | | Elear
i Free Physical Me... 9507 MB 96510 MB 9896 S 0.0 oL —
Process Physical ... 62.02 MB 312 MB 4210 £ 40.0 — s File igme o
Process Private ... 3876 MB 5363 MB 5523 = igg : S
Process Virtual M. 380 MEB 5370 MB 5537 ; 0.0 0:00 minutes fhome/mpirvu/sdks/pratd@0sra-201705
Total Phveical M 15047 MB 15047 MB 1504 v S 00 0:00 minutes fhome/mpirvu/sdks/pratd@0sra-201708
- X = & 0:00 1:00 2:00 200 4:00 0:00 minutes fhome/mpirvu/sdks/prabdB0sr3-201709 »
elapsed time (minutes) £ >
Native memory t... B Runtimenativem... 23 | & O :
o Sockets open | iy Network /O 52 = = wi| Files open | | File /O 23 =
Catego . Allocated Deep Allocated Sha... Bytes D ;
gory p yt SEEkEE BpEi S F!Ie open evlent
~ IRE 23049 0.0 1169 ME & ebat clien swant File close event
T 3676 3668 337 MB
ozwe | [T 1 LN |
LR e S 0:00 @12 024 036 043 1:00 0:00 001 0:02 0:04 (05 006 0:07 @
Class Librari 343 0.0 4.07 MB elapsed time (minutes) elapsed time (minutes) $¢
34 || >

1BM Runtime Technologies

Garbage Collector and Memory Visualizer (GCMV)

Visualize a wide range of GC data and Java heap statistics over time

Recommendations for optimizing GC

Detect memory leaks

Visualize physical and virtual memory of the JVM

Extracts information from:
— GC verbose logs — for Java heap
— ps (linux, z/OS), svmon (AlX) or perfmon (Windows) tools — for native footprint

35

GCMYV data categories

36

Data category
ViGC v
Data iterns
[Cards cleaned
[]Cards traced
[Class loaders unloaded
[Classes unloaded
] Dynamic SoftReference Threshold
[1GC reason
LIGC type
[JIntended Concurrent Trace Kickoff
] IWM restarts
[Maximum SoftReference Threshold
[Objects queued for finalization
[]Phantom references cleared
[]PhantomReference count (after collection)
[PhantomReference count (before collection)
[JRequested object sizes triggering allocation failures
[] 5oft references cleared
[SeftReference count (after collection)
[] SoftReference count (before collection)
[Trace Target
[]Weak references cleared
[] WeakReference count (after collection)
[] WeakReference count (before collection)

Data category

VGC pause
Data iterns

[Exclusive access time

[Jinterval between allocation failure garbage collections
[]Interval between concurrent garbage collections
[linterval between garbage collection triggers
[linterval between garbage collections (mark-sweep/ nursery/
I Mark time

Pause time

[]5cavenge time

[]Sweep time

[Time spent unloading classes

[Total pause tirme

Data category
VGC heap
Data items
] Amount failed flipped
] Amount flipped
[Amount freed
[Amount tenured
[Free LOA (after collection)
[Free LOA (before collection)
[Free SOA (after collection)
[Free SOA (before collection)
[Free heap (after collection)
[Free heap (before collection)
[Free nursery heap (after collection)
[Free nursery heap (before collection)
[Free tenured heap (after collection)
] Free tenured heap (before collection)
[GC rate (per ms)
[Heap size
I Mursery size
[Tenure age
[Tenure rate (per ms)
[Tenured heap size
[Tilt ratio
[Total LOA (after collection)
[Total LOA (before collection)
[Total SOA (after collection)
[Total SOA (before collection)
[Used LOA (after collection)
[Used LOA (before collection)
[Used SOA (after collection)
[Used 504 (before collection)
[JUsed heap (after collection)
[Used heap (after global collection)
Used nursery heap (after collection)
Used tenured heap (after collection)

[Used tenured heap (after global collection)

:%@

1BM Runtime Technologies

GCMYV snapshots

= Analysis and recommendations

37

— Analysis can be limited using cropping

Tuning recommendation

& Excessive time (4 38%) is being spent in GC. Consider increasing
the size of the heap.

& At one point 968 objects were queued for finalization Using
finalizers is not recommended as it can slow garbage collection and
cause wasted space in the heap. Consider reviewing your application
for occurrences of the finalize() method. You can use IBM Monitoring
and Diagnostic Tools - Memory Analyzer to list objects that are only
retained through finalizers.

472 global garbage collects took on average 564% longer than the
average nursery collect. If you believe this is abnormally high and
unacceptable, consider using the Balanced GC policy for applications
deployed on a 64-bit platform with a heap size greater than 4GB.

Summary

Concurrent collection count 17
Forced collection count 0

GC Mode gencon

Global collections - Mean garbage collection pause (ms) 3.31
Global collections - Mean interval between collections (ms) 15146

Global collections - Number of collections 17
Global collections - Total amount tenured (MB) 460
Largest memory request (bytes) 2097160
Number of collections triggered by allocation failure 7416

Nursery collections - Mean garbage collection pause (ms) |1.15
Nursery collections - Mean interval between collections (ms)|37.5

Nursery collections - Number of collections 7416
Nursery collections - Total amount flipped (MB) 5357
Nursery collections - Total amount tenured (MB} 66 9
Proportion of time spent in garbage collection pauses (%) |4.38
Proportion of time spent unpaused (%) 9562
Rate of garbage collection (MB/minutes) 24311

= Graphical display of data

heaap (MB)

80.0

70.0

60.0

50.0

40.0

30.0

20.0

10.0

0.0

Many metrics to choose from
Allows zoom, cropping and change of units

0.0075
——Heap iz =——0.0070
s s Hoocss

50 100 150 200 250
time (seconds)

[SpuUoaas) sl

%@

1BM Runtime Technologies

Conclusion

Eclipse OpenJ9 == The better JVM for the cloud

38

39

Marius Pirvu
mpirvu@ca.ibm.com

J9

Questions?

Resources

Description: hitps://www.eclipse.org/open|9
Get involved: https://github.com/eclipse/open|9
https://github.com/eclipse/omr

Build your own: https://www.eclipse.org/openj9/0j9 build.html
Download Opend9 binaries: hitps://adoptopenjdk.net/?variant=openjdk9-open|9
Performance: https://qgithub.com/eclipse/openj9-website/blob/master/benchmark/daytrader3.md
Links to benchmarks:

— Daytrader3: https://qithub.com/WASdev/sample.daytrader3

— AcmeAir: https://github.com/blueperf/acmeair

40 nnnnnnnnnnnnnnnnnnnnnnn

