
Marius Pirvu, IBM Runtime Technologies
Nov 13, 2017 - mpirvu@ca.ibm.com

Performance
Beyond Throughput:
An OpenJ9 Case Study

Important disclaimers

 THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY.

 WHILST EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION
CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED.

 ALL PERFORMANCE DATA INCLUDED IN THIS PRESENTATION HAVE BEEN GATHERED IN A CONTROLLED
ENVIRONMENT. YOUR OWN TEST RESULTS MAY VARY BASED ON HARDWARE, SOFTWARE OR
INFRASTRUCTURE DIFFERENCES.

 ALL DATA INCLUDED IN THIS PRESENTATION ARE MEANT TO BE USED ONLY AS A GUIDE.

 IN ADDITION, THE INFORMATION CONTAINED IN THIS PRESENTATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM, WITHOUT NOTICE.

 IBM AND ITS AFFILIATED COMPANIES SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT
OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.

 NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, OR SHALL HAVE THE EFFECT OF:
– CREATING ANY WARRANT OR REPRESENTATION FROM IBM, ITS AFFILIATED COMPANIES OR ITS

OR THEIR SUPPLIERS AND/OR LICENSORS

2

Eclipse OpenJ9: an open source JVM

J9
JVM

Open source projects at Eclipse
Foundation

2016/2017 and on

Closed source development
at IBM

1997 – 2016/2017

OMR

OpenJ9 consumes OMR

March
2016

Sep
2017

3

 Very open. Dual license: Eclipse Public License v2.0 and Apache 2.0

 Very easy for anyone to contribute
– github repositories:

 https://github.com/eclipse/openj9
 https://github.com/eclipse/omr

– Prebuilt binaries:
 https://adoptopenjdk.net/nightly.html?variant=openjdk9-openj9

 Performance
– Excellent performance for a wide variety of metrics important in the cloud
– Hardware exploitation for x86, Power and Z mainframes
– Focus on large applications rather than microbenchmarks

Why use Eclipse OpenJ9?

4

OpenJDK9 with OpenJ9

OpenJDK9

OpenJDK9OpenJDK9

HotSpotHotSpot

OpenJDK9

Hotspot

5

OpenJ9 ≠ Java9

OpenJDK8 with OpenJ9 coming soon!

Performance is about more than just throughput

 Performance means different things to different people

 OpenJ9 pays attention to many other metrics important to customers:
– start-up time
– footprint
– ramp-up
– response time
– CPU

 Different goals different design decisions

 Must keep a balance make sensible trade-offs

6

 Start-up time – 37% improvement

 Footprint – 44-60% improvement

 Behavior at idle – 55% improvement

 Ramp-up in a resource constrained environment

 Response time – 10x improvement

 Performance monitoring tools

Agenda

7

Start-up time

 Start-up time == time needed for your server application to become operational

 Important for:
– developers
– scaling out operations
– outages (planned or not)

 General characteristics of a start-up phase
– A fair amount of class loading
– A large amount of interpretation activity (jitting takes time!)

 OpenJ9 solutions
– Shared class cache technology and dynamic Ahead-of-Time (AOT) compilation
– Specialized running mode: -Xquickstart

8

Eclipse OpenJ9 shared class cache technology

 Memory mapped file used to cache:
– ROM classes (pre-processed .class files)
– AOT compiled code
– Interpreter profiling data

 Population of the cache happens naturally and transparently at runtime
– Distinction between ‘cold’ and ‘warm’ runs

 Enabled with –Xshareclasses

 Dynamic AOT compilation
– Relocatable format
– AOT loads are ~100 times faster than JIT compilations
– More generic code slightly less optimized

 Generate AOT code only during start-up
 Recompilation helps bridge the gap

9

-Xquickstart mode

 Use cases
– User cares a lot about start-up time
– Very short running applications
– Interactive, graphical applications

 Under the hood
– Cheaper JIT compilations, but less optimized code
– Interpreter profiler is disabled

 Somewhat similar to “-client” from HotSpot

10

Start-up performance with Eclipse OpenJ9

0.00

0.20

0.40

0.60

0.80

1.00

1.20

OpenJDK9 with
HotSpot

OpenJDK9 with
OpenJ9

OpenJDK9 with
OpenJ9 w/AOT

OpenJDK9 with
OpenJ9 w/AOT -

Xquickstart

N
or

m
al

iz
ed

 s
ta

rt
-u

p
tim

e

DayTrader3 Start-up Time Comparison
(all runs with -Xmx1g)

37% 49%

11

Benchmark: https://github.com/WASdev/sample.daytrader3
More details: https://github.com/eclipse/openj9-website/blob/master/benchmark/daytrader3.md

Footprint

 Myth: machines have plenty of RAM, so optimizing for footprint is not worthwhile

 Reality: application footprint is very important to:
– Cloud users: pay for resources
– Cloud providers: higher app density means lower operational costs

 Trends:
– Virtualization big machines partitioned into many smaller VM guests
– Microservices increased memory usage; native JVM footprint matters

 Distinction between:
– On disk image size – relevant for Cloud Foundry
– Virtual memory footprint – relevant for 32-bit applications
– Physical memory footprint (RSS)

In the cloud footprint is king

12

Footprint after start-up comparison

 After start-up, OpenJ9 uses 60% less physical memory than HotSpot

13

0.00

0.20

0.40

0.60

0.80

1.00

1.20

OpenJDK9 with
HotSpot

OpenJDK9 with
OpenJ9

OpenJDK9 with
OpenJ9 w/AOT

OpenJDK9 with
OpenJ9 w/AOT -

Xquickstart

N
or

m
al

iz
ed

 J
V

M
 R

e
si

de
nt

 S
et

 S
iz

e
DayTrader3 Footprint (after start-up) Comparison

(all runs with -Xmx1g)

60%

Footprint during load comparison

 During load, OpenJ9 uses 44% less physical memory than HotSpot

 Further savings when multiple JVMs connect to the same shared class cache

14

0 300 600 900 1200 1500 1800

JV
M

 R
es

id
e

nt
 S

et
 S

iz
e

Time (sec)

DayTrader3 Footprint (during load) Comparison
(all runs with -Xmx1g)

OpenJDK9 with HotSpot

OpenJDK9 with OpenJ9

OpenJDK9 with OpenJ9
w/AOT

44%

Footprint Testimonials

15

Behavior at idle

 Undesirable effects of idle JVMs:
– May consume a small amount of CPU
– May create some churn at the hypervisor level (swapping in/out guest VMs)
– May take the CPU out of low power mode
– May hold on to garbage memory that they don’t really need

16

 Important for cloud in high application density scenarios
(over commit)

 anthesisgroup.com: “Some 30 percent of VMs are zombies”
https://anthesisgroup.com/wp-content/uploads/2017/03/Comatsoe-Servers-Redux-2017.pdf

Idle behavior in Eclipse OpenJ9

 Idle state detection mechanism

 Reduced frequency of sampling thread in idle state

 Reduced optimization level for JIT compiler during idle state

 Free the garbage in the heap and disclaim physical memory pages after some time in idle
state

17

CPU and wakeups of idle JVM

OpenJDK9 with HotSpot – 0.168% CPU

Summary: 84.7 wakeups/second, 0.0 GPU
ops/seconds, 0.0 VFS ops/sec and 0.3% CPU use.
Usage Events/s Category Description
0.9 ms/s 44.2 Process /sdks/OpenJDK9-
x64_Linux_20172509/jdk-9+181/bin/java
119.5 µs/s 20.0 Process [xfsaild/dm-1]
138.6 µs/s 7.4 Timer tick_sched_timer
10.5 µs/s 1.6 Process [rcu_sched]
190.4 µs/s 1.5 Timer hrtimer_wakeup

OpenJDK9 with OpenJ9 – 0.111% CPU

Summary: 38.5 wakeups/second, 0.1 GPU
ops/seconds, 0.0 VFS ops/sec and 0.2% CPU use
Usage Events/s Category Description
681.2 µs/s 19.2 Process /sdks/OpenJDK9-
OPENJ9_x64_Linux_20172509/jdk-9+181/bin/java
58.3 µs/s 5.2 Timer tick_sched_timer
21.9 µs/s 3.6 Process [rcu_sched]
39.3 µs/s 2.0 Timer hrtimer_wakeup
157.1 µs/s 1.0 kWork ixgbe_service_task

 Analyze behavior of idle OpenLiberty server with powertop tool

18

 OpenJ9 triggers ~55% fewer wakeups than HotSpot

Footprint of idle Eclipse OpenJ9

-XX:+IdleTuningGcOnIdle

19

Benchmark: https://github.com/blueperf/acmeair
More details: https://developer.ibm.com/javasdk/2017/09/25/still-paying-unused-memory-java-app-idle

CPU constrained environments

 Virtual machines with 1 CPU are not that uncommon

 Compilation threads contending for CPU with application threads; side effects:
– Slow ramp-up
– Possible jitter in server response time

 OpenJ9 solutions to reduce CPU consumption:
– Dynamic AOT compilation (enabled with -Xshareclasses)
-Xtune:virtualized

 More conservative JIT optimization. Subdued recompilation.
 Saves compilation CPU (20-30%) at the expense of a 2-3% throughput loss
 Some reduction in footprint
 Works well in conjunction of dynamic AOT (generate AOT code as much as

possible - if enabled)

20

Ramping-up in a CPU constrained environment

 -Xtune:virtualized and AOT good for CPU constrained situations and
short running applications

21

0 200 400 600 800 1000 1200 1400 1600

T
h

ro
ug

hp
ut

 (
tr

a
ns

ac
tio

ns
/s

ec
)

Time (sec)

Daytrader3 Ramp-up Comparison
All runs with -Xmx1G. JVM pinned to 1 core

OpenJDK9 with HotSpot

OpenJDK9 with OpenJ9

OpenJDK9 with OpenJ9 w/AOT
-Xtune:virtualized

Response time

 Jitter in response time due to:
– JIT compilation overhead (when JVM is CPU constrained)
– GC operation – “stop the world”

 Addressing the GC pauses in OpenJ9
– Metronome – soft real-time GC policy

 GC pauses configurable to as low as 1ms
– Pause-less GC feature for zOS

 GC can run concurrently with application
 Hardware support in z14 – Guarded Storage Facility
 Enable with -Xgc:concurrentScavenge

22

z14: Pause-less Garbage Collection
Java Store Inventory and Point of Sale Application

Java GC-tuning made easier

High scavenge pause times made this
application a candidate for Pause-less GC

 Up to 3.4x better throughput for response-
time constrained Service Level Agreements
(SLAs)

 Up to 10x better average GC pause-times

IBM Monitoring and Diagnostic Tools - Garbage
Collection and Memory Visualizer

Enable Pause-less GC with:
• IBM Java 8 SR5 or newer (OpenJ9 included)
• IBM z14’s Guarded Storage Facility
• z/OS 2.3 or z/OS 2.2 with APAR OA51643

JVM option: -Xgc:concurrentScavenge

23

Performance monitoring tools

 Many low level performance tools exist
– CPU: top, htop, vmstat, pidstat, mpstat, sar, nmon
– Memory: sar, dstat, slabtop, free, nmon
– Disk activity: iotop, iostat, sar, nmon
– Network: ping, iftop, netstat, tcp, nicstat,
– Profilers: perf, oprofile, tprof

 OpenJ9 performance tools
– Health Center
– Garbage Collector and Memory Visualizer (GCMV)

24

Health Center

 Live monitoring tool with low overhead
(<1%)

 Provides insight into your application
behavior with visualization

 Diagnoses potential problems and
makes recommendations

 Powerful API allowing embedding of
Health Center into other applications

25

Health Center

 Tool is composed of two parts
– Agent that collects data from running JVM
– Eclipse based client that connects to the

agent (typically running remotely)

26

 The agent ships with all IBM SDK for Java releases

 Latest version of agent available from within Health
Center client

 Full usage instructions provided in the client Help topics

 Monitoring enabled with command line option
java –Xhealthcenter HelloWorld

 Late attach possible

 Headless mode - collection without connecting the GUI

Health Center

 Provides visualization and monitoring in the following areas
– Garbage collection
– Method profiling
– Lock analysis
– Threading
– Classes
– Environment
– Memory
– CPU
– I/O
– Network

27

Health Center – Garbage collection perspective

28

Health Center – Method Profiling perspective

 Always-on profiling
– No bytecode instrumentation, no recompilation

 Identifies hottest methods

 Full callstacks to identify callers and callees

29

Health Center – Locking perspective

 Always-on lock
monitoring

 Helps identify points of
contention in the
application

30

Health Center – Threads perspective

 List of current threads and states

 Number of threads over time

 Detection of contended monitors

 Deadlock detection and analysis

31

Health Center – Class loading perspective

 Shows all loaded classes

 Shows timeline of loading events

 Identifies shared classes

 Shows number of unloaded
classes

32

Health Center – Environment reporting

 Detects invalid Java options

 Detects options which may hurt
performance

 Useful for detecting configuration-
related problems

33

Health Center – Other perspectives

34

Garbage Collector and Memory Visualizer (GCMV)

 Visualize a wide range of GC data and Java heap statistics over time

 Recommendations for optimizing GC

 Detect memory leaks

 Visualize physical and virtual memory of the JVM

 Extracts information from:
– GC verbose logs – for Java heap
– ps (linux, z/OS), svmon (AIX) or perfmon (Windows) tools – for native footprint

35

GCMV data categories

36

GCMV snapshots
 Analysis and recommendations

– Analysis can be limited using cropping

37

 Graphical display of data
– Many metrics to choose from
– Allows zoom, cropping and change of units

Conclusion

Eclipse OpenJ9 == The better JVM for the cloud

38

Questions?

Marius Pirvu
mpirvu@ca.ibm.com

39

Resources

40

 Description: https://www.eclipse.org/openj9
 Get involved: https://github.com/eclipse/openj9

https://github.com/eclipse/omr
 Build your own: https://www.eclipse.org/openj9/oj9_build.html
 Download OpenJ9 binaries: https://adoptopenjdk.net/?variant=openjdk9-openj9
 Performance: https://github.com/eclipse/openj9-website/blob/master/benchmark/daytrader3.md
 Links to benchmarks:

– Daytrader3: https://github.com/WASdev/sample.daytrader3
– AcmeAir: https://github.com/blueperf/acmeair

