
Programming
The	Network	Data	Plane

Changhoon	Kim

Beautiful	ideas:	What	if	you	could	…
• Realize	a	small,	but	super-fast	DNS	cache
• Perform	TCP	SYN	authentication	for	billions	of	SYNs	per	sec
• Build	a	replicated	key-value	store	ensuring	RW	ops	in	a	few	usecs
• Improve	your	consensus	service	performance	by	~100x
• Boost	your	Memcached cluster’s	throughput	by	~10x
• Speed	up	your	DNN	training	dramatically	by	realizing	parameter	

servers

2

… using	switches in	your	network?

You	couldn’t	do	any	of	those	so	far	because	…

• No	DIY	– must	work	with	vendors	at	feature level
• Excruciatingly	complicated	and	involved	process	to	build	

consensus	and	pressure	for	features
• Painfully	long	and	unpredictable	lead	time
• To	use	new	features,	you	must	get	new	switches
• What	you	finally	get	!=	what	you	asked	for

3

This	is	very	unnatural	to	developers
• Because	you	all	know	how	to	realize	your	own	ideas	by	

“programming”	CPUs
– Programs	used	in	every	phase	(implement,	test,	and	deploy)
– Extremely	fast	iteration	and	differentiation	
– You	own	your	own	ideas
– A	sustainable	ecosystem	where	all	participants	benefit

4

Can	we	replicate	this	healthy,	sustainable	
ecosystem	for	networking?

Reality:	Packet	forwarding	speeds

0.1

1

10

100

1000

10000

100000

1990 1995 2000 2005 2010 2015 2020

Switch Chip
CPU

5

Gb/s
(per	chip)

6.4Tb/s

Reality:	Packet	forwarding	speeds

0.1

1

10

100

1000

10000

100000

1990 1995 2000 2005 2010 2015 2020

Switch Chip
CPU

6

80x
Gb/s
(per	chip)

6.4Tb/s

7

What	does	a	typical	switch	look	like?

Chip Driver

Run-time API

Protocol Daemons
(BGP, OSPF, etc.)

Other Mgmt
Apps

Data plane

Control plane

Switch	OS
(Linux	variant)

PC
Ie

…

L2
Forwarding

Table

L3
Routing

Table

ACL
Table

…

A switch is just a Linux box with a high-speed switching chip

packets packets

Just	S/W	-- You	can	
freely	change	this

Fixed-function	H/W	
-- There’s	nothing	

you	can	change	here

Networking	systems	have	been	built	“bottoms-up”

Switch	OS

“This	is	roughly	how	I	process	
packets	…”	

Fixed-function	switch

in	English

API

Turning	the	tables	“top-down”

Switch	OS

“This	is	precisely	how	you	must	
process	packets”	

Programmable	Switch

in	P4

API

“Programmable	switches	are	10	-100x	slower	
than	fixed-function	switches.	They	cost	more	

and	consume	more	power.”
Conventional	wisdom	in	networking

Evidence:	Tofino	6.5Tb/s	switch	(arrived	Dec	2016)

The	world’s	fastest	and most	programmable	switch.
No	power,	cost,	or	power	penalty	compared	to	fixed-function	switches.
An	incarnation	of	PISA	(Protocol	Independent	Switch	Architecture)

Domain-specific	processors

CPU

Computers

Java
Compiler

GPU

Graphics

OpenCL
Compiler

DSP

Signal	
Processing

Matlab
Compiler

Machine
Learning

?

TPU

TensorFlow

Compiler

Networking

?

Language
Compiler>>>

CPU

Computers

Java
Compiler

GPU

Graphics

OpenCL
Compiler

DSP

Signal	
Processing

Matlab
Compiler

Machine
Learning

?

TPU

TensorFlow

Compiler

PISA

Networking

P4
Compiler>>>

Domain-specific	processors

PISA: An architecture for high-speed
programmable packet forwarding

14

15

Pr
og

ra
m

m
ab

le
Pa

rs
er

Match
Memory

Action
ALU

PISA: Protocol Independent Switch Architecture

16

Pr
og

ra
m

m
ab

le
Pa

rs
er

PISA: Protocol Independent Switch Architecture

Ingress EgressBuffer

Buffer
M M

17

Pr
og

ra
m

m
ab

le
Pa

rs
er

PISA: Protocol Independent Switch Architecture
Match Logic
(Mix of SRAM and TCAM for lookup tables,
counters, meters, generic hash tables)

Action Logic
(ALUs for standard boolean and arithmetic operations,
header modification operations, hashing operations, etc.)

Recirculation

Programmable	
Packet	Generator

CPU (Control plane)

A

…

A

…

Ingress match-action stages (pre-switching) Egress match-action stages (post-switching)

Generalization of RMT [sigcomm’13]

Why we call it
protocol-independent packet

processing

18

Logical Data-plane View
(your P4 program)
Switch Pipeline

Device does not understand any protocols
until it gets programmed

Queues

Pr
og

ra
m

m
ab

le
Pa

rs
er

Fi
xe

d
Ac

tio
n

M
at

ch
 T

ab
le

M
at

ch
 T

ab
le

M
at

ch
 T

ab
le

M
at

ch
 T

ab
le

L2
IPv4

IPv6
ACL

Ac
tio

n
AL

U
s

Ac
tio

n
AL

U
s

Ac
tio

n
AL

U
s

Ac
tio

n
AL

U
spacketpacket packetpacket

CLK
19

M
at

ch
 T

ab
le

Ac
tio

n
AL

U
s

Mapping logical data-plane design to
physical resources

Queues

M
at

ch
 T

ab
le

M
at

ch
 T

ab
le

M
at

ch
 T

ab
le

L2
 T

ab
le

IP
v4

 T
ab

le

IP
v6

 T
ab

le

AC
L

Ta
bl

e

Ac
tio

n
AL

U
s

Ac
tio

n
AL

U
s

Ac
tio

n
AL

U
s

L2
IPv4

IPv6
ACL

Logical Data-plane View
(your P4 program)
Switch Pipeline

L2
IPv6

ACL
IPv4

L2
 A

ct
io

n
M

ac
ro

v4
 A

ct
io

n
M

ac
ro

v6
 A

ct
io

n
M

ac
ro

AC
L

Ac
tio

n
M

ac
ro

Pr
og

ra
m

m
ab

le
Pa

rs
er

CLK
20

Re-program in the field

L2
 T

ab
le

IP
v4

 T
ab

le

AC
L

Ta
bl

e

IP
v6

 T
ab

le

M
y

En
ca

p

L2
IPv4

IPv6
ACLMyEncap

L2
 A

ct
io

n
M

ac
ro

v4
 A

ct
io

n
M

ac
ro

AC
L

Ac
tio

n
M

ac
ro

Ac
tio

n

MyEncap

v6
 A

ct
io

n
M

ac
ro

IP
v4

Ac
tio

n

IP
v4

Ac
tio

n

IP
v6

Ac
tio

n

IPv6

Pr
og

ra
m

m
ab

le
Pa

rs
er

CLK

Logical Data-plane View
(your P4 program)
Switch Pipeline

Queues

21

P

4

:

P

r

o

g

r

a

m

m

i

n

g

P

r

o

t

o

c

o

l

-

I

n

d

e

p

e

n

d

e

n

t

P

a

c

k

e

t

P

r

o

c

e

s

s

o

r

s

P

a

t

B

o

s

s

h

a

r

t

†

,

D

a

n

D

a

l

y

*
,

G

l

e

n

G

i

b

b

†

,

M

a

r

t

i

n

I

z

z

a

r

d

†

,

N

i

c

k

M

c

K

e

o

w

n

‡

,

J

e

n

n

i

f

e

r

R

e

x

f

o

r

d

**
,

C

o

l

e

S

c

h

l

e

s

i

n

g

e

r

**
,

D

a

n

T

a

l

a

y

c

o

†

,

A

m

i

n

V

a

h

d

a

t

¶

,

G

e

o

r

g

e

V

a

r

g

h

e

s

e

§

,

D

a

v

i

d

W

a

l

k

e

r

**

†

B

a

r

e

f

o

o

t

N

e

t

w

o

r

k

s *
I

n

t

e

l

‡

S

t

a

n

f

o

r

d

U

n

i

v

e

r

s

i

t

y **
P

r

i

n

c

e

t

o

n

U

n

i

v

e

r

s

i

t

y ¶

G

o

o

g

l

e §

M

i

c

r

o

s

o

f

t

R

e

s

e

a

r

c

h

ABSTRACTP4 is a high-level language for programming protocol-inde-

pendent packet processors. P4 works in conjunction with

SDN control protocols like OpenFlow. In its current form,

OpenFlow explicitly specifies protocol headers on which it

operates. This set has grown from 12 to 41 fields in a few

years, increasing the complexity of the specification while

still not providing the flexibility to add new headers. In this

paper we propose P4 as a strawman proposal for how Open-

Flow should evolve in the future. We have three goals: (1)

Reconfigurability in the field: Programmers should be able

to change the way switches process packets once they are

deployed. (2) Protocol independence: Switches should not

be tied to any specific network protocols. (3) Target inde-

pendence: Programmers should be able to describe packet-

processing functionality independently of the specifics of the

underlying hardware. As an example, we describe how to

use P4 to configure a switch to add a new hierarchical label.

1. INTRODUCTION
Software-Defined Networking (SDN) gives operators pro-

grammatic control over their networks. In SDN, the con-

trol plane is physically separate from the forwarding plane,

and one control plane controls multiple forwarding devices.

While forwarding devices could be programmed in many

ways, having a common, open, vendor-agnostic interface

(like OpenFlow) enables a control plane to control forward-

ing devices from di↵erent hardware and software vendors.

Version
Date

Header Fields

OF 1.0
Dec 2009 12 fields (Ethernet, TCP/IPv4)

OF 1.1
Feb 2011 15 fields (MPLS, inter-table metadata)

OF 1.2
Dec 2011 36 fields (ARP, ICMP, IPv6, etc.)

OF 1.3
Jun 2012 40 fields

OF 1.4
Oct 2013 41 fields

Table 1: Fields recognized by the OpenFlow standard

The OpenFlow interface started simple, with the abstrac-

tion of a single table of rules that could match packets on a

dozen header fields (e.g., MAC addresses, IP addresses, pro-

tocol, TCP/UDP port numbers, etc.). Over the past five

years, the specification has grown increasingly more com-

plicated (see Table 1), with many more header fields and

multiple stages of rule tables, to allow switches to expose

more of their capabilities to the controller.

The proliferation of new header fields shows no signs of

stopping. For example, data-center network operators in-

creasingly want to apply new forms of packet encapsula-

tion (e.g., NVGRE, VXLAN, and STT), for which they re-

sort to deploying software switches that are easier to extend

with new functionality. Rather than repeatedly extending

the OpenFlow specification, we argue that future switches

should support flexible mechanisms for parsing packets and

matching header fields, allowing controller applications to

leverage these capabilities through a common, open inter-

face (i.e., a new “OpenFlow 2.0” API). Such a general, ex-

tensible approach would be simpler, more elegant, and more

future-proof than today’s OpenFlow 1.x standard.

Figure 1: P4 is a language to configure switches.

Recent chip designs demonstrate that such flexibility can

be achieved in custom ASICs at terabit speeds [1, 2, 3]. Pro-

gramming this new generation of switch chips is far from

easy. Each chip has its own low-level interface, akin to

microcode programming. In this paper, we sketch the de-

sign of a higher-level language for Programming Protocol-

independent Packet Processors (P4). Figure 1 shows the

relationship between P4—used to configure a switch, telling

it how packets are to be processed—and existing APIs (such

as OpenFlow) that are designed to populate the forwarding

tables in fixed function switches. P4 raises the level of ab-

straction for programming the network, and can serve as a

ACM SIGCOMM Computer Communication Review
88

Volume 44, Number 3, July 2014

What does a P4 program look like?

L2
IPv4

ACLMyEncap
IPv6

header_type ethernet_t {
fields {

dstAddr : 48;
srcAddr : 48;
etherType : 16;

}
}

parser parse_ethernet {
extract(ethernet);
return select(latest.etherType) {

0x8100 : parse_vlan;
0x800 : parse_ipv4;
0x86DD : parse_ipv6;

}
}

TCP

IPv4 IPv6

MyEncapEth

header_type my_encap_t {
fields {

foo : 12;
bar : 8;
baz : 4;
qux : 4;
next_protocol : 4;

}
}

23

What does a P4 program look like?

L2
IPv4

ACLMyEncap
IPv6

table ipv4_lpm
{

reads {
ipv4.dstAddr : lpm;

}
actions {

set_next_hop; drop;
}

}

action set_next_hop(nhop_ipv4_addr, port)
{

modify_field(metadata.nhop_ipv4_addr, nhop_ipv4_addr);
modify_field(standard_metadata.egress_port, port);
add_to_field(ipv4.ttl, -1);

}

control ingress
{

apply(l2);
apply(my_encap);
if (valid(ipv4) {

apply(ipv4_lpm);
} else {

apply(ipv6_lpm);
}
apply(acl);

}

24

P4.org (http://p4.org)
§ Open-source community to nurture the language

§ Open-source software – Apache license
§ A common language: P416

§ Support for various types of devices and targets
§ Enable a wealth of innovation

§ Diverse “apps” (including proprietary ones) running on commodity
targets

§ With no barrier to entry
§ Free of membership fee, free of commitment, and simple licensing

25

So,	what	kinds	of	exciting	new	
opportunities	are	arising?

26

The	network	should	answer	these	questions

1. “Which	path	did	my	packet	take?”
2. “Which	rules	did	my	packet	follow?”
3. “How	long	did	it	queue	at	each	switch?”
4. “Who	did	it	share	the	queues	with?”

PISA	+	P4	can	answer	all	four	questions	for	the	first	time.		
At	full	line	rate.	Without	generating	any	additional	packets!

1
2
3
4

Log,	Analyze
Replay

Add:	SwitchID,	Arrival	Time,	
Queue	Delay,	Matched	Rules,	…

Original	Packet

Visualize

In-band	Network	Telemetry	(INT)
A	read-only	version	of	Tiny	Packet	Programs	[sigcomm’14]

A	quick	demo	of	INT!

29

30

What	does	this	mean	to	you?
• Improve	your	distributed	apps’	performance	with	
telemetry	data

• Ask	the	four	key	questions	regarding	your	packets	to	
network	admins	or	cloud	providers	

• Huge	opportunities	for	Big-data	processing	and	
machine-learning	experts

• “Self-driving”	network	is	not	hyperbole

31

PISA: An architecture for high-speed
programmable packet forwarding

32

event processing

What	we	have	seen	so	far:
Adding	new	networking	features

1. New	encapsulations	and	tunnels
2. New	ways	to	tag	packets	for	special	treatment
3. New	approaches	to	routing:	e.g.,	source	routing	in	data-

center	networks
4. New	approaches	to	congestion	control
5. New	ways	to	manipulate	and	forward	packets:	e.g.	splitting	

ticker	symbols	for	high-frequency	trading

33

What	we	have	seen	so	far:
World’s	fastest	middle	boxes

1. Layer-4	load	connection	balancing	at	Tb/s
– Replace	100s	of	servers	or	10s	of	dedicated	appliances	with	one	PISA	switch
– Track	and	maintain	mappings	for	5	~	10	million	HTTP	connections

2. Stateless	firewall	or	DDoS	detector
– Add/delete	and	track	100s	of	thousands	of	new	connections	per	second
– Include	other	stateless	line-rate	functions	

(e.g.,	TCP	SYN	authentication,	sketches,	or	Bloomfilter-based	whitelisting)

34

What	we	have	seen	so	far:
Offloading	part	of	computing	to	network

1. DNS	cache
2. Key-value	cache	[ACM	SOSP’17]

3. Chain	replication
4. Paxos [ACM	CCR’16]	and	RAFT
5. Parameter	service	for	DNN	training

35

Example:	NetCache

Clients

Key-Value
Cache

Query
Statistics

High-performance Storage Servers

Key-Value Storage RackController

L2/L3
Routing

ToR Switch Data plane

• Non-goal
– Maximize	the	cache	hit	rate

• Goal
– Balance	the	workloads	of	backend	servers	by	serving	

only	O(NlogN)	hot	items	-- N is	the	number	of	
backend	servers

– Make	the	“fast,	small-cache”	theory	viable	for	
modern	in-memory	KV	servers	[Fan	et.	al.,	SOCC’11]

• Data	plane
– Unmodified	routing
– Key-value	cache	built	with	on-chip	SRAM
– Query	statistics	to	detect	hot	items

• Control	plane
– Update	cache	with	hot	items	to	handle	dynamic	

workloads

The	“boring	life”	of	a	NetCache switch

test the switch performance at full traffic load. The value
process is executed each time when the packet passes an
egress port. To avoid packet size keeps increasing for read
queries, we remove the value field at the last egress stage
for all intermediate ports. The servers can still verify the
values as they are kept in the two ports connected to them.

• Server rotation for static workloads (§6.3). We use one
machine as a client, and the other as a storage server. We
install the hot items in the switch cache as for a full stor-
age rack and have the client send traffic according to a Zipf
distribution. For each experiment, the storage server takes
one key-value partition and runs as one node in the rack.
By rotating the storage server for all 128 partitions (i.e.,
performing the experiment for 128 times), we aggregate
the results to obtain the result for the entire rack. Such
result aggregation is justified by (i) the shared-nothing
architecture of key-value stores and (ii) the microbench-
mark that demonstrates the switch is not the bottleneck.

To find the maximum effective system throughput, we
first find the bottleneck partition and use that server in the
first iteration. The client generates queries destined to this
particular partition, and adjusts its sending rate to control
the packet loss rate between 0.5% to 1%. This sending rate
gives the saturated throughput of the bottleneck partition.
We obtain the traffic load for the full system based on this
sending rate, and use this load to generate per-partition
query load for remaining partitions. Since the remaining
partitions are not the bottleneck partition, they should be
able to fully serve the load. We sum up the throughputs of
all partitions to obtain the aggregate system throughput.

• Server emulation for dynamic workloads (§6.4). Server
rotation is not suitable for evaluating dynamic workloads.
This is because we would like to measure the transient be-
havior of the system, i.e., how the system performance
fluctuates during cache updates, rather than the system
performance at the stable state. To do this, we emulate
128 storage servers on one server by using 128 queues.
Each queue processes queries for one key-value partition
and drops queries if the received queries exceed its pro-
cessing rate. To evaluate the real-time system throughput,
the client tracks the packet loss rate, and adjusts its send-
ing rate to keep the loss rate between 0.5% to 1%. The
aggregate throughput is scaled down by a factor of 128.
Such emulation is reasonable because in these experiments
we are more interested in the relative performance fluctu-
ations when NetCache reacts to workload changes, rather
than the absolute performance numbers.

6.2 Switch Microbenchmark
We first show switch microbenchmark results using snake

test (as described in §6.1). We demonstrate that NetCache is
able to run on programmable switches at line rate.

Throughput vs. value size. We populate the switch cache
with 64K items and vary the value size. Two servers and

0 32 64 96 128
9alue 6ize (Byte)

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hS

ut
 (B

4
3

6
)

(a) Throughput vs. value size. (b) Throughput vs. cache size.

Figure 9: Switch microbenchmark (read and update).
one switch are organized to a snake structure. The switch
is configured to provide 62 100Gbps ports, and two 40Gbps
ports to connect servers. We let the two servers send cache
read and update queries to each other and measure the maxi-
mum throughput. Figure 9(a) shows the switch provides 2.24
BQPS throughput for value size up to 128 bytes. This is bot-
tlenecked by the maximum sending rate of the servers (35
MQPS). The Barefoot Tofino switch is able to achieve more
than 4 BQPS. The throughput is not affected by the value size
or the read/update ratio. This is because the switch ASIC is
designed to process packets with strict timing requirements.
As long as our P4 program is complied to fit the hardware
resources, the data plane can process packets at line rate.

Our current prototype supports value size up to 128 bytes.
Bigger values can be supported by using more stages or using
packet mirroring for a second round of process (§4.4.2).

Throughput vs. cache size. We use 128 bytes as the value
size and change the cache size. Other settings are the same
as the previous experiment. Similarly, Figure 9(b) shows that
the throughput keeps at 2.24 BQPS and is not affected by the
cache size. Since our current implementation allocates 8 MB
memory for the cache, the cache size cannot be larger than
64K for 128-byte values. We note that caching 64K items is
sufficient for balancing a key-value storage rack.

6.3 System Performance
We now present the system performance of a NetCache

key-value storage rack that contains one switch and 128 stor-
age servers using server rotation (as described in §6.1).

Throughput. Figure 10(a) shows the system throughput un-
der different skewness parameters with read-only queries and
10,000 items in the cache. We compare NetCache with No-
Cache which does not have the switch cache. In addition,
we also show the the portions of the NetCache throughput
provided by the cache and the storage servers respectively.
NoCache performs poorly when the workload is skewed.
Specifically, with Zipf 0.95 (0.99) distribution, the NoCache
throughput drops down to only 22.5% (15.6%), compared to
the throughput under the uniform workload. By introducing
only a small cache, NetCache effectively reduces the load
imbalances and thus improves the throughput. Overall, Net-
Cache improves the throughput by 3.6⇥, 6.5⇥, and 10⇥ over
NoCache, under Zipf 0.9, 0.95 and 0.99, respectively.

10

test the switch performance at full traffic load. The value
process is executed each time when the packet passes an
egress port. To avoid packet size keeps increasing for read
queries, we remove the value field at the last egress stage
for all intermediate ports. The servers can still verify the
values as they are kept in the two ports connected to them.

• Server rotation for static workloads (§6.3). We use one
machine as a client, and the other as a storage server. We
install the hot items in the switch cache as for a full stor-
age rack and have the client send traffic according to a Zipf
distribution. For each experiment, the storage server takes
one key-value partition and runs as one node in the rack.
By rotating the storage server for all 128 partitions (i.e.,
performing the experiment for 128 times), we aggregate
the results to obtain the result for the entire rack. Such
result aggregation is justified by (i) the shared-nothing
architecture of key-value stores and (ii) the microbench-
mark that demonstrates the switch is not the bottleneck.

To find the maximum effective system throughput, we
first find the bottleneck partition and use that server in the
first iteration. The client generates queries destined to this
particular partition, and adjusts its sending rate to control
the packet loss rate between 0.5% to 1%. This sending rate
gives the saturated throughput of the bottleneck partition.
We obtain the traffic load for the full system based on this
sending rate, and use this load to generate per-partition
query load for remaining partitions. Since the remaining
partitions are not the bottleneck partition, they should be
able to fully serve the load. We sum up the throughputs of
all partitions to obtain the aggregate system throughput.

• Server emulation for dynamic workloads (§6.4). Server
rotation is not suitable for evaluating dynamic workloads.
This is because we would like to measure the transient be-
havior of the system, i.e., how the system performance
fluctuates during cache updates, rather than the system
performance at the stable state. To do this, we emulate
128 storage servers on one server by using 128 queues.
Each queue processes queries for one key-value partition
and drops queries if the received queries exceed its pro-
cessing rate. To evaluate the real-time system throughput,
the client tracks the packet loss rate, and adjusts its send-
ing rate to keep the loss rate between 0.5% to 1%. The
aggregate throughput is scaled down by a factor of 128.
Such emulation is reasonable because in these experiments
we are more interested in the relative performance fluctu-
ations when NetCache reacts to workload changes, rather
than the absolute performance numbers.

6.2 Switch Microbenchmark
We first show switch microbenchmark results using snake

test (as described in §6.1). We demonstrate that NetCache is
able to run on programmable switches at line rate.

Throughput vs. value size. We populate the switch cache
with 64K items and vary the value size. Two servers and

(a) Throughput vs. value size.

0 16. 32. 48. 64.
CacKe 6ize

0.0

0.5

1.0

1.5

2.0

2.5

TK
ro

ug
KS

ut
 (B

4
3

6
)

(b) Throughput vs. cache size.

Figure 9: Switch microbenchmark (read and update).
one switch are organized to a snake structure. The switch
is configured to provide 62 100Gbps ports, and two 40Gbps
ports to connect servers. We let the two servers send cache
read and update queries to each other and measure the maxi-
mum throughput. Figure 9(a) shows the switch provides 2.24
BQPS throughput for value size up to 128 bytes. This is bot-
tlenecked by the maximum sending rate of the servers (35
MQPS). The Barefoot Tofino switch is able to achieve more
than 4 BQPS. The throughput is not affected by the value size
or the read/update ratio. This is because the switch ASIC is
designed to process packets with strict timing requirements.
As long as our P4 program is complied to fit the hardware
resources, the data plane can process packets at line rate.

Our current prototype supports value size up to 128 bytes.
Bigger values can be supported by using more stages or using
packet mirroring for a second round of process (§4.4.2).

Throughput vs. cache size. We use 128 bytes as the value
size and change the cache size. Other settings are the same
as the previous experiment. Similarly, Figure 9(b) shows that
the throughput keeps at 2.24 BQPS and is not affected by the
cache size. Since our current implementation allocates 8 MB
memory for the cache, the cache size cannot be larger than
64K for 128-byte values. We note that caching 64K items is
sufficient for balancing a key-value storage rack.

6.3 System Performance
We now present the system performance of a NetCache

key-value storage rack that contains one switch and 128 stor-
age servers using server rotation (as described in §6.1).

Throughput. Figure 10(a) shows the system throughput un-
der different skewness parameters with read-only queries and
10,000 items in the cache. We compare NetCache with No-
Cache which does not have the switch cache. In addition,
we also show the the portions of the NetCache throughput
provided by the cache and the storage servers respectively.
NoCache performs poorly when the workload is skewed.
Specifically, with Zipf 0.95 (0.99) distribution, the NoCache
throughput drops down to only 22.5% (15.6%), compared to
the throughput under the uniform workload. By introducing
only a small cache, NetCache effectively reduces the load
imbalances and thus improves the throughput. Overall, Net-
Cache improves the throughput by 3.6⇥, 6.5⇥, and 10⇥ over
NoCache, under Zipf 0.9, 0.95 and 0.99, respectively.

10

One	can	further	increase	the	value	sizes	with	more	stages,	
recirculation,	or	mirroring.

Yes,	it’s	Billion	
Queries	Per	Sec,	
not	a	typo	J

And	its	“not	so	boring”	benefits

NetCache	provides	3-10x	throughput	improvements.

Throughput of a key-value storage rack with
one Tofino switch and 128 storage servers.

uQiforP ziSf-0.9 ziSf-0.95 ziSf-0.99
WorNloDd DisWribuWioQ

0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hS

uW
 (B

Q
P

S
)

1oCDche 1eWCDche(servers) 1eWCDche(cDche)

NetCache is a key-value store that leverages

&Billions of queries/sec a few usec latency

even under

workloads.

&highly-skewed rapidly-changing

in-network caching to achieve

Summing	it	up	…

40

Why	data-plane	programming?
1. New	features:	Realize	your	beautiful	ideas	very	quickly
2. Reduce	complexity:	Remove	unnecessary	features	and	tables
3. Efficient	use	of	H/W	resources:	Achieve	biggest	bang	for	buck
4. Greater	visibility:	New	diagnostics,	telemetry,	OAM,	etc.
5. Modularity:	Compose	forwarding	behavior	from	libraries
6. Portability:	Specify	forwarding	behavior	once;	compile	to	many	devices
7. Own	your	own	ideas:	No	need	to	share	your	ideas	with	others

“Protocols are being lifted off chips and into software”
– Ben Horowitz

41

• PISA	and	P4:	The	first	attempt	to	define	a	machine	
architecture	and	programming	models	for	networking	in	a	
disciplined	way

• Network	is	becoming	yet	another	programmable	platform

• It’s	fun	to	figure	out	the	best	workloads	for	this	new	
machine	architecture

42

My	observations

Want	to	find	more	resources	or	follow	up?
• Visit	http://p4.org and	http://github.com/p4lang

– P4	language	spec	
– P4	dev	tools	and	sample	programs
– P4	tutorials	

• Join	P4	workshops	and	P4	developers’	days
• Participate	in	P4	working	group	activities

– Language,	target	architecture,	runtime	API,	applications
• Need	more	expertise	across	various	fields	in	computer	science

– To	enhance	PISA,	P4,	dev	tools	(e.g.,	for	formal	verification,	equivalence	
check,	and	many	more	…)

43

Thanks.	
Let’s	develop	your	beautiful	ideas	

in	P4!

44

