QCon

SAN FRANCISCO

Programming
The Network Data Plane

Changhoon Kim

U, dl

BAREFCO:T

NETWORKS

Beautiful ideas: What if you could ...

Realize a small, but super-fast DNS cache

Perform TCP SYN authentication for billions of SYNs per sec

Build a replicated key-value store ensuring RW ops in a few usecs
Improve your consensus service performance by ~100x

Boost your Memcached cluster’s throughput by ~10x

Speed up your DNN training dramatically by realizing parameter
servers

... using switches in your network?

You couldn’t do any of those so far because ...

e No DIY — must work with vendors at feature level

e Excruciatingly complicated and involved process to build
consensus and pressure for features

* Painfully long and unpredictable lead time
* To use new features, you must get new switches
 What you finally get != what you asked for

This is very unnatural to developers

* Because you all know how to realize your own ideas by
“programming” CPUs
— Programs used in every phase (implement, test, and deploy)
— Extremely fast iteration and differentiation
— You own your own ideas
— A sustainable ecosystem where all participants benefit

Can we replicate this healthy, sustainable
ecosystem for networking?

Reality: Packet forwarding speeds

100000 - 6.4Th/s -

10000 -

=>=Switch Chip

1000 é

Gb/s 100
(per chip)]
10

-

0.1 -
1990 1995 2000 2005 2010 2015 2020

Reality: Packet forwarding speeds

100000 - 6.4Tb/s -

10000 -
; =>=Switch Chip
1000 - 80X -=-cpyu

Gb/s 100
(per chip)]
10

-

0.1 -

1990 1995 2000 2005 2010 2015 2020

What does a typical switch look like?

A switch is just a Linux box with a high-speed switching chip

Control plane

Data plane

Switch OS
(Linux variant)

PCle

packets

N

Just S/W -- You can
freely change this

/ Fixed-function H/W

Protocol Daemons Other Mgmt
(BGP, OSPF, etc.) | .- Apps
3
Run-time API
i
Chip Driver
$ 1 3
L2 L3
Forwarding Routing "?‘a%{;
Table Table

-- There’s nothing

>
packets

Networking systems have been built “bottoms-up”

Switch OS

“This is roughly how | process
packets ...”

Fixed-function switch

Turning the tables “top-down”

Switch OS

“This is precisely how you must
process packets”

Programmable Switch

“Programmab!~ of '\'fuz@ -100x slower
than fixed: N mor¢ >y cost more
anc an wer.”

Evidence: Tofino 6.5Tb/s switch (arrived Dec 2016)

The world’s fastest and most programmable switch.

No power, cost, or power penalty compared to fixed-function switches.
An incarnation of PISA (Protocol Independent Switch Architecture)

Domain-specific processors

, Signal Machine _
Computers Graphics Processing Learning Networking
Java OpenCL Matlab TensorFlow Language
Compiler Compiler Compiler Compiler Compiler
?

CPU GPU DSP TPU

Domain-specific processors

, Signal Machine _
Computers Graphics Processing Learning Networking
Java OpenCL Matlab TensorFlow P4
Compiler Compiler Compiler Compiler Compiler

CPU GPU DSP TPU

PISA: An architecture for high-speed
programmable packet forwarding

PISA: Protocol Independent Switch Architecture

Match Action
Memory ALU

%

e

WL

15

Egress

Buffer

Ingress

PISA: Protocol Independent Switch Architecture

M

AAAAA

HEAEED

AAAAAA

HEAAE

AAAAAN

HEARER

AAAAAA

AT
alilib

AAAAA

HEAEED

AAAAAA

HEAEED

AAAAAA

HEAAAR

AAAAAA

--»--

19sied
ajqewwesbouid

MMM

16

PISA: Protocol Independent Switch Architecture

Match Logic Action Logic
(Mix of SRAM and TCAM for lookup tables, (ALUs for standard boolean and arithmetic operations,
Programmable counters, meters, generic hash tables) header modification operations, hashing operations, etc.)
Packet Generator /
o | (([mmp — N =)
e
.| ||ED = [—
c ol LD >y 0D B >
s 77| B R [
24| || EEE s O
s || |[EE5 D ED D
\ / \, /
Ingress match-action stages (pre-switching) Egress match-action stages (post-switching)
Recirculation

&) -

Generalization of RMT [sigcomm’13] CPU (Control plane)
17

Why we call it
protocol-independent packet
processing

Device does not understand any protocols
until it gets programmed

Logical Data-plane View
(your P4 program)

Switch Pipeline

peokel 0 o Iy 0
r= = | = = = = Queues

S c | © T B ©
E Q S| <C = = | < s —1T]

— L o i L 3 i
Sa o |ge = Io| O S —1T]

2 ol | S © T |5 ©

i = < = r = < |_| =

- 15l

CLK

Mapping logical data-plane design to
physical resources

Logical Data-plane View
(your P4 program)

Switch Pipeline

o) o 2 o S

o q 3 Lo O L. 2 | Queues

C - S 0 s o) O

s M| = = Il = Il s 11
(@) =

c © k= < K3 © B3 -] 2

o O < | 2 > || ol < __1T]

o N O | i < < o

o N = | =l © S}

o L— | | S

)
—
A

20

Re-program in the field

Logical Data-plane View
(your P4 program)

Switch Pipeline

& o ot
5 S o B Queues
© : § el =
— ®
©
E g M| < | S _ 11
© @© = - 0O
S 0 < O B _ 111
|
g b < |k
]
o [S

CLK

21

8
b 1o e,
With ne

the (¢

ce: g,
rk Prog, cols,

]lﬂ”],] be,

Yepeng,

LV ing

Rule
’fan:/a,g,

Onen%w

What does a P4 program look like?

header_type ethernet t {
fields {

dstAddr : 48;

srcAddr : 48;

parser parse ethernet {
extract (ethernet);
return select(latest.etherType) {
0x8100 : parse vlan;

header_type my encap t {
fields {
foo : 12;
bar
baz
qux
next protocol : 4;

23

What does a P4 program

table ipv4 1nm
{

look like?

reads {

ipv4.dstAddr control ingress
} {
actions

apply(12);
set next hop; EEo

apply(my_encap);
if (valid(ipv4) {
apply(ipv4_lpm);
} else {
apply (ipv6_lpm);
}
action set next hop(nhop ig ; apply(acl);
{

modify field(metadata.nhop ipv4 addr, nhop ipv4 addr);
modify field(standard metadata.egress port, port);
add_to_field(ipv4.ttl, -1);

24

P4.org (http://p4.org) m

= Open-source community to nurture the language
= Open-source software — Apache license
= A common language: P44
= Support for various types of devices and targets

= Enable a wealth of innovation

= Diverse “apps” (including proprietary ones) running on commodity
targets

= With no barrier to entry

* Free of membership fee, free of commitment, and simple licensing

So, what kinds of exciting new
opportunities are arising?

The network should answer these questions

@ “Which path did my packet take?”

© “Which rules did my packet follow?”

€ “How long did it queue at each switch?”
O “Wwho did it share the queues with?”

PISA + P4 can answer all four questions for the first time.
At full line rate. Without generating any additional packets!

In-band Network Telemetry (INT)

A read-only version of Tiny Packet Programs [sigcomm’14]

Add: SwitchlID, Arrival Time,
Queue Delay, Matched Rules, ...

Original Packet

s g

UL

Log, Analyze Visualize
Replay

A quick demo of INT!

&

© [Monitor X

C ® 10.201.208.236:3000/switches

O0: Kitsilano Monitor

Switches Flows Events & Anomalies

Time Switch Topology

im 1h 1d 1w Max
Start Jul 25, 2017 03:57:22.311

End Jul 26,2017 03:57:22.311

Realtime

Metric

Hop Latency - Max

«

c1l2h2 cll2h1
ID: ID:

gldcs2
ID: 230

clsl
ID: 225

c1l2
ID: 162

cll1h:
ID:

br2
ID: 234

g2dcs1
ID: 231

c2s1
ID: 227

cll1
ID: 161

cllihl
ID:

br1
ID:233

gldes1
ID: 229

cls2
ID: 226

c2i2
ID: 164

c2i2h1
ID:

g2dcs2
1D: 232

c2s2
ID: 228

c2l1
ID: 163

c2I2h2
ID:

c2l1h2
ID:

c2l1h1
D:

What does this mean to you?

Improve your distributed apps’ performance with
telemetry data

Ask the four key questions regarding your packets to
network admins or cloud providers

Huge opportunities for Big-data processing and
machine-learning experts

“Self-driving” network is not hyperbole

PISA: An architecture for high-speed
programmable packetferwarding-

event processing

What we have seen so far:
Adding new networking features

New encapsulations and tunnels
New ways to tag packets for special treatment

New approaches to routing: e.g., source routing in data-
center networks

New approaches to congestion control

New ways to manipulate and forward packets: e.g. splitting
ticker symbols for high-frequency trading

What we have seen so far:
World’s fastest middle boxes

1. Layer-4 load connection balancing at Tb/s
— Replace 100s of servers or 10s of dedicated appliances with one PISA switch
— Track and maintain mappings for 5~ 10 million HTTP connections

2. Stateless firewall or DDoS detector

— Add/delete and track 100s of thousands of new connections per second

— Include other stateless line-rate functions
(e.g., TCP SYN authentication, sketches, or Bloomfilter-based whitelisting)

LA w e

What we have seen so far:
Offloading part of computing to network

DNS cache
Key-value cache [ACM SOSP’17]

Chain replication
Paxos [ACM CCR’16] and RAFT
Parameter service for DNN training

Example: NetCache

Clients U

Controller Key-Value Storage Rack
|
L2/L3 Key-Value Query
Routing Cache Statistics

ToR Switch Data plane

High-performance Storage Servers

Non-goal
— Maximize the cache hit rate

Goal

— Balance the workloads of backend servers by serving
only O(NlogN) hot items -- N is the number of
backend servers

— Make the “fast, small-cache” theory viable for
modern in-memory KV servers [Fan et. al., SOCC’11]

Data plane
— Unmodified routing
— Key-value cache built with on-chip SRAM
— Query statistics to detect hot items
Control plane

— Update cache with hot items to handle dynamic
workloads

The “boring life” of a NetCache switch

25 25
) o—eo ® @ ® 2 i ® ® ® ®
220 & 2.0 ¢
s}) . 11}
Z 15| Yes, it’s Billion =157
240l Queries Per Sec, S0}
=2 2
© 05| not a typo © °05}
= =
0.0 J J J J 0.0 ‘ ‘ ‘ |
0 32 64 96 128 0 16K 32K 48K 64K
Value Size (Byte) Cache Size

One can further increase the value sizes with more stages,
recirculation, or mirroring.

And its “not so boring” benefits

Throughput of a key-value storage rack with
one Tofino switch and 128 storage servers.
[_1 NoCache Il NetCache(servers) llll NetCache(cache)
o 20 }

RN
(6

o
o

Throughput (BQP
=

-

uniform zipf-0.9 zipf-0.95 zipf-0.99
Workload Distribution

o
o

NetCache provides 3-10x throughput improvements.

NetCache is a key-value store that leverages

In-network caching to achieve

Billions of queries/sec R a few usec latency

even under

highly-skewed & rapidly-changing

workloads.

Summing it up ...

Why data-plane programming?

New features: Realize your beautiful ideas very quickly

Reduce complexity: Remove unnecessary features and tables

Efficient use of H/W resources: Achieve biggest bang for buck

Greater visibility: New diagnostics, telemetry, OAM, etc.

Modularity: Compose forwarding behavior from libraries

Portability: Specify forwarding behavior once; compile to many devices

N o seWDNRE

Own your own ideas: No need to share your ideas with others

“Protocols are being lifted off chips and into software”

— Ben Horowitz

41

My observations

* PISA and P4: The first attempt to define a machine
architecture and programming models for networking in a
disciplined way

* Network is becoming yet another programmable platform

e It’s fun to figure out the best workloads for this new
machine architecture

Want to find more resources or follow up?

Visit http://p4.org and http://github.com/p4lang

— P4 language spec
— P4 dev tools and sample programs
— P4 tutorials

Join P4 workshops and P4 developers’ days
Participate in P4 working group activities
— Language, target architecture, runtime API, applications

Need more expertise across various fields in computer science

— To enhance PISA, P4, dev tools (e.g., for formal verification, equivalence
check, and many more ...)

Thanks.
Let’s develop your beautiful ideas
in P4

.

