
@thisNatasha

Solving HTTP Problems 
With Code and Protocols
NATASHA ROONEY



@thisNatasha

7. Application Data HTTP / 
IMAP

6. Data Presentation, 
Encryption

SSL / TLS

5. Session and connection 
management

-

4. Transport of packets and 
streams

TCP / UDP

3. Routing and delivery of 
datagrams on the Network

IP / IPSec

2. Local Data Connection Ethernet

1. Physical data connection 
(cables) 

CAT5

HTTP
TLS
TCP
IP

Web



@thisNatasha

Some fundamental 
limitations



@thisNatasha

300,000,000 m/s



@thisNatasha

300,000,000 m/s
Speed of Light



@thisNatasha300km, 1ms



@thisNatasha10ms



@thisNatasha10ms

5G



@thisNatasha

Only one way!
And as the crow flies...



@thisNatasha@thisNatasha

Hops



@thisNatashaNot good enough!



@thisNatashaCDNs, Edge



@thisNatasha

Mobile Network (not wifi) The Internet



@thisNatasha

Amount of data



@thisNatasha



@thisNatasha



@thisNatasha



@thisNatasha



@thisNatasha@thisNatasha

Speed & Distance
Capped by Speed of Light

Amount of Data
>100 objects per site 
800k to 2.5mb data

>50 resources on same domain



@thisNatasha

RTs are Evil
Mostly because of physics. Not much you can do about that.



@thisNatasha

HTTP/1



@thisNatasha

HTTP/1

TLS

TCP

IP

HTTP/1

TLS

TCP

Request



@thisNatasha

HTTP/1

TLS

TCP

IP

HTTP/1

TLS

TCP

Request

Response



@thisNatasha

HTTP/1

TLS

TCP

IP

HTTP/1

TLS

TCP

Request

Response

Request



@thisNatasha



@thisNatasha



@thisNatashaUrgh...



@thisNatasha@thisNatasha

Spriting



@thisNatasha@thisNatasha

Inlining



@thisNatasha



@thisNatasha



@thisNatasha

Image source: @jungkees



@thisNatasha

Pipelining



@thisNatasha

Home

Roads

Supermarket



@thisNatasha

Home

Roads

Supermarket



@thisNatasha

HTTP/1

TLS

TCP

IP

HTTP/1

TLS

TCP

TCP Setup

TLS Setup

HTTP Request/Response



@thisNatasha

HTTP/2



@thisNatasha

SPDY



@thisNatasha

Home

Roads

Supermarket



@thisNatasha

Home

Roads

Supermarket



@thisNatasha@thisNatasha

SPDY
A Protocol by Google

2009

Header Compression

Parallel Connections

Multiplexing

Priority Marking

Server Push

TLS (to work)



@thisNatasha@thisNatasha

SPDY
A Protocol by Google

Header Compression



@thisNatasha



@thisNatasha



@thisNatasha



@thisNatasha



@thisNatasha

HTTP/2



@thisNatasha

“Idea was to maintain HTTP 
semantics but change how it 
is transported.”

Daniel Stenberg
https://daniel.haxx.se/blog/



@thisNatasha

Home

Roads

Supermarket



@thisNatasha

Home

Roads

Supermarket



@thisNatasha

HTTP/1

TLS

TCP

IP

HTTP/1

TLS

TCP

Request

Response

Request

Request



@thisNatasha@thisNatasha

HTTP2
A Protocol by IETF

(SDPY base)

Binary

Header Compression

Multiplexing

Server Push

TLS...



@thisNatasha@thisNatasha

HTTP2
A Protocol by IETF

(SDPY base)



@thisNatasha



@thisNatasha@thisNatasha

Stats
Gimme gimme

35% Requests

70% HTTPS Connections

13% Top 1,000,000 Sites

29% Top 1000 Sites

“90% your site”



@thisNatasha

2% packet loss
HTTP1 is better.



@thisNatasha

Head of line blocking



@thisNatasha

Home

Roads

Supermarket



@thisNatasha

Home

Roads

Supermarket



@thisNatasha

Home

Roads

Supermarket

Not good enough!



@thisNatasha

Home

Roads

Supermarket

Not good enough!



@thisNatasha

TCP issue
(Can happen on any protocol with in-order delivery)



@thisNatasha

QUIC



@thisNatasha

“Idea was to maintain HTTP 
semantics but change how it 
is transported.”

Daniel Stenberg
https://daniel.haxx.se/blog/



@thisNatasha

Home

Roads

Supermarket

TCP



@thisNatasha@thisNatasha

TCP
Suffers from 

Head of Line Blocking

UDP
Can work...with help.

Transport Layer



@thisNatasha

“We want QUIC to work on 
today’s internet”

Jana Iyengar
QUIC Editor, Google



@thisNatasha

Ossification



@thisNatasha

Why TCP or UDP only?



@thisNatasha

Image source: http://itpro.nikkeibp.co.jp/



@thisNatasha

HTTP/2

TLS 1.2+

TCP

IP

Application

QUIC

UDP

Google CryptoCongestion 
Control



@thisNatasha

HTTP/2

TLS 1.2+

TCP

IP

Application

QUIC

UDP

Google CryptoCongestion 
Control



@thisNatasha@thisNatasha

QUIC
A Protocol by Google

Goo



@thisNatasha

HTTP/2

TLS 1.2+

TCP

IP

HTTP over QUIC

QUIC

UDP

TLS 1.3



@thisNatasha

“A "stream" is an independent, 
bidirectional sequence of frames  
exchanged between the client and server 
within an HTTP/2 connection… 

A single HTTP/2 connection can contain 
multiple concurrently open streams…”

Hypertext Transfer Protocol Version 2 (HTTP/2), RFC7540



@thisNatasha

Image source: High Performance Browser Networking https://hpbn.co/http2/ 



@thisNatasha

IP

HTTP over QUIC

QUIC

UDP

TLS 1.3

HTTP over QUIC

QUIC

UDP

TLS 1.3



@thisNatasha

IP

HTTP over QUIC

QUIC

UDP

TLS 1.3

HTTP over QUIC

QUIC

UDP

TLS 1.3



@thisNatasha

IP

HTTP over QUIC

QUIC

UDP

TLS 1.3

HTTP over QUIC

QUIC

UDP

TLS 1.3



@thisNatasha

IP

HTTP over QUIC

QUIC

UDP

TLS 1.3

HTTP over QUIC

QUIC

UDP

TLS 1.3

He
ad
 o
f 
Li
ne
 

Bl
oc
ki
ng
!



@thisNatasha

RTs are Evil
Mostly because of physics. Not much you can do about that.



@thisNatasha

IP

HTTP over QUIC

QUIC

UDP

TLS 1.3

HTTP over QUIC

QUIC

UDP

TLS 1.3

0RTT: Setup + Data

2RTT: If QUIC version 
negotiation needed

1RTT: New Crypto Keys



@thisNatashaReduce the RTs!



@thisNatasha



@thisNatasha



@thisNatasha

7% Internet Traffic
35% Google Egress Traffic



@thisNatasha

How does this affect me?



@thisNatasha

Abstraction
Is a computer scientist’s friend / fiend



@thisNatasha

Layer Violation



@thisNatasha

7. Application Data HTTP / 
IMAP

6. Data Presentation, 
Encryption

SSL / TLS

5. Session and connection 
management

-

4. Transport of packets and 
streams

TCP / UDP

3. Routing and delivery of 
datagrams on the Network

IP / IPSec

2. Local Data Connection Ethernet

1. Physical data connection 
(cables) 

CAT5

HTTP
TLS
TCP
IP

Web



@thisNatasha@thisNatasha

Some things
If you have to do 

something...

Manage your resources 
logically

Detect on upgrade header 
and adapt

Measure

Remember Physics!



@thisNatasha@thisNatasha

Recap
We made it!

RTTs, Physics, Data

SPDY, HTTP2, QUIC

Header compression

Multiplexing & Streams

Head of Line Blocking

Make protocols for  
today’s internet



@thisNatasha

3



@thisNatasha



@thisNatasha



@thisNatasha



@thisNatasha

Thank-you
People: Martin Thomson, Mark Nottingham, Jana Iyengar, 
Mike Bishop, Eric Rescola, Ian Swett



@thisNatasha



@thisNatasha



@thisNatasha



@thisNatasha

 

7. Application Data HTTP / 
IMAP

6. Data Presentation, 
Encryption

SSL / TLS

5. Session and connection 
management

-

4. Transport of packets and 
streams

TCP / UDP

3. Routing and delivery of 
datagrams on the Network

IP / IPSec

2. Local Data Connection Ethernet

1. Physical data connection 
(cables) 

CAT5

OSI Model



@thisNatashaHandshake Flow

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
Key Exchange

Authentication Algorithm Strength Mode

Cipher MAC or PRFTLS
 / 

Han
dsh

ake
 Ch

eat
 Sh

eet
Key Exchange Method: creates the pre master secret. 
Premaster secret is combined with PRF to create master 
secret 

RSA, DHE_RSA, 
ECDHE_RSA, 
ECDHE_ECDSA

Authentication Method: Uses public key crypto and 
certificates public key together. Once certificate is 
validated the client can used public key. 

RSA or ECDSA
Certs: X.509, ASN.1 
DER encoding.

Server 
Hello, 
Certificate

- Server selects cipher & compression 
method
- Server send certificate
- Client authenticates

Key Exchange Pre-master secret exchanged between 
client & server, client validates certificate

Master 
Secret 

Client & Server can compute Master Secret. 

MAC Server verifies MAC, returns to client to 
verify also. 

Finished Handshake complete.

Client Hello Client sends TLS Version, Ciphersuites, 
Compression methods

Ciphers, Standards and Terms

Encryption 

3DES, AES, ARIA, 
CAMELLIA, RC4, and 
SEED
[1] Steam: adds MAC [2] 
Block: adds IV and 
padding after encryption 
[3] Encryption (AEAD): 
encryption and integrity 
validation, using nonce, 
no padding, no IV.

Master Secret

Pre-master secret: 
combines params to 
help client and server 
create master secret.

Master Secret: both 
server and client create 
this from pre-master 
secret to symmetrically 
encrypt

Integrity Validation

PRF: Pseudorandom 
Function. Takes a 
secret, a seed, and a 
unique label. TLS1.2 
suites use PRF based 
on HMAC and SHA256

MAC: used for integrity 
validation in handshake 
and record.



@thisNatasha

[1] Client Hello

Cli-ant Ser-ver

Server Hello [2]
Certificate [3]

Server Key Exchange [4]
Server Hello Done [5]

[6] Client Key Exchange
[7] (Change Cipher Spec)
[8] Finished

(Change Cipher Spec) [9]
Finished [10]

TLS Handshake



@thisNatasha

Cli-ant Ser-ver

TCP and TLS with Session Tickets
TCP Fast Open Handshake

[1] Client Hello

Server Hello [2]
(Change Cipher Spec) [3]

Finished [4]

[5] (Change Cipher Spec)
[6] Finished



@thisNatasha



@thisNatasha

Transport Overhead



@thisNatasha@thisNatasha

Min


