

Models in Minutes not Months: Data Science as Microservices QCon 2017

1.1

Sarah Aerni, Einstein Platform saerni@salesforce.com

@itweetsarah

LIVE DEMO

Agenda

BUILDING AI APPS: Perspective Of A Data Scientist

- Journey to building your first model
- Barriers to production along the way

DEPLOYING MODELS IN PRODUCTION: Built For Reuse

- Where engineering and applications meet AI
- DevOps in Data Science monitoring, alerting and iterating

AUTO MACHINE LEARNING: Machine Learning Pipelines as a Collection of Microservices

- Create reusable ML pipeline code for multiple applications customers
- Data Scientists focus on exploration, validation and adding new apps and models

ENABLING DATA SCIENCE

A DATA SCIENTISTS VIEW OF BUILDING MODELS

Engineer Features and Build Models

> Interpret Model Results and Accuracy

A data scientist's view of the journey to building models

Engineer Features and Build Models

> Interpret Model Results and Accuracy

A data scientist's view of the journey to building models

DATA SCIENCE IS A TEAM EFFORT

Data Engineers: Access to data IT: Environment and tools Domain Experts: Context and input at each step

salesforce

Engineer Features and Build Models

Engineer Features and Build Models

Engineer Features

Empty fields One-hot encoding (pivoting) Email domain of a user Business titles of a user Historical spend Email-Company Name Similarity Interpret Model Results and Accuracy

salesforce

Engineer Features and Build Models

>>> from sklearn import svm >>> from numpy import loadtxt as I, random as r >>> pls = numpy.loadtxt("leadFeatures.data", delimiter=",") >>> testSet = r.choice(len(pls), int(len(pls)*.7), replace=False) >>> X, y = pls[-testSet,:-1], pls[-testSet:,-1] >>> clf = svm.SVC() >>> clf.fit(X,y) SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,decision_function_shape=None, degree=3, gamma='auto', kernel='rbf', max_iter=-1, tol=0.001, verbose=False) >>> clf.score(pls[testSet,:-1],pls[testSet,-1]) 0.88571428571428568

Engineer Features and Build Models

classification correctly classified 1000 total cases Leads # 10-Geographies

Engineer Features and Build Models

Bringing a Model to Production Requires a Team

- Applications deliver predictions for customer consumption
- Predictions are produced by the models live in production
- Pipelines deliver the data for modeling and scoring at an appropriate latency
- Monitoring systems allow us to check the health of the models, data, pipelines and app

Source: Salesforce Customer Relationship Survey conducted 2014-2016 among 10,500+ customers randomly selected. Response sizes per question vary.

Bringing a Model to Production Requires a Team

Data Scientists

Continue evaluating models Monitor for anomalies and degradation Iteratively improve models in production

Front-End Developers

Build customer-facing UI

Application instrumentation and a logging

Product Managers

Gather requirements & feedback Provide business context

Data Engineers

Provide data access and management capabilities for data scientists

Set up and monitor data pipelines

Improve performance of data processing pipelines

Platform Engineers

Machine resource management Alerting and monitoring

Supporting a Model in Production is Complex

Only a small fraction of real-world ML systems is a composed of ML code, as shown by the small black box in the middle. The required surrounding infrastructure is fast and complex.

D. Sculley, et al. Hidden technical debt in machine learning systems. In Neural Information Processing Systems (NIPS). 2015

MODELS IN PRODUDCTION

WHAT IT TAKES TO DEPLOY AN AI-POWERED APPLICATION

Supporting Models in Production is Mostly NOT AI

Only a small fraction of real-world ML systems is a composed of ML code, as shown by the small black box in the middle. The required surrounding infrastructure is fast and complex.

Adapted from D. Sculley, et al. Hidden technical debt in machine learning systems. In Neural Information Processing Systems (NIPS). 2015

Monitoring your AI's health like any other app

Pipelines, Model Performance, Scores – Invest your time where it is needed!

Deploy, monitor and iterate on models in one location

Microservice architecture

Customizable model-evaluation & monitoring dashboards

Scheduling and workflow management

In-platform secured experimentation and exploration

Data Scientists focus their efforts on modeling and evaluating results

Why Stop at Microservices for Supporting Your ML Code?

Why stop here?

Your ML code can also be just a collection of microservices!

Auto Machine Learning

Building reusable ML code

Leveraging Platform Services to Easily Deploy 1000s of Apps

Data Scientists on App #1

salesforc

Leveraging Platform Services to Easily Deploy 1000s of Apps

Data Scientists on App #2

salesforce

Let's Add a Third App

Data Scientists on App #2

Data Scientists on App #3

How This Process Would Look in Salesforce

hulu

App #11

App #12

App #10

App #9

150,000 customers

AutoML for feature engineering

Catego	rical Variables	Text Fields	Numerical Buckets
NAME	✓ TITLE	DESCRIPTION	number of employees
Jim Steele	Senior VP	A blessing in disguise	90
John Gardner	Senior VP	Time flies when you're having fun	224
Andy Smith	Vice President		192
Test User	Vice President	Alles hat ein Ende, hur die Wurst hat zwei	12
Test User	CEO	um den heißen Brei herumreden	72
Test User	Vice President	We'll cross that bridge when we come to it	560
Test User	Chairperson	You can say that again	24
Test User	CEO	Your guess is as good as mine	0 208

AutoML for feature engineering

Categori	cal variables				
NAME	✓ TITLE	Senior VP	CEO	Vice President	
Jim Steele	Senior VP	1	0	0	
John Gardner	Senior VP	1	0	0	
Andy Smith	Vice President	0	0	1	
Test User	Vice President	0	0	1	
Test User	CEO	0	1	0	
Test User	Vice President	0	0	1	
Test User	Chairperson	0	0	0	
Test User	CEO	0	1	0	

salesforce

AutoML for feature engineering

Text Fields

DESCRIPTION	Word Count	Word Count (no stop words)	Is English	Sentiment
A blessing in disguise	4	2	1	1
Time flies when you're having fun	6	3	1	1
Alles hat ein Ende, nur die Wurst hat zwei	9	4	0	0
um den heißen Brei herumreden	6	4	0	-1
We'll cross that bridge when we come to it	7	3	1	0
You can say that again	5	1	1	0
Your guess is as good as mine	- 7	3	1	0

AutoML for feature engineering

Numerical Buckets		
number of	->	employee
90	->	10-99
16	->	10-99
224	->	100-499
192	->	100-499
335	->	100-499
12	->	10-99
621	->	500-1000
72	->	10-99
560	->	500-1000
80	->	10-99
24	->	10-99
208	->	0-9 100-490
200		T00 4//

What Now? How autoML can choose your model

>>> from sklearn import svm >>> from numpy import loadtxt as I, random as r >>> clf = svm.SVC() >>> pls = numpy.loadtxt("leadFeatures.data", delimiter=",") >>> testSet = r.choice(len(pls), int(len(pls)*.7), replace=False) >>> X, y = pls[-testSet,:-1], pls[-testSet:,-1] >> clf.fit(X,y) SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,decision_function_shape=None, degree=3, gamma='auto', kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) >>> clf.score(pls[testSet,:-1],pls[testSet,-1]) 0.88571428571428568

Should we try other model forms? Features? Kernels or hyperparameters?

Each use case will have its own model and features to use. We enable building separate models and features with 1 code base using OP

A tournament of models!

A tournament of models!

Deploy Monitors, Monitor, Repeat!

Sample Dashboard on Simulated Data

Deploy Monitors, Monitor, Repeat!

Pipelines, Model Performance, Scores – Invest your time where it is needed!

Deploy Monitors, Monitor, Repeat!

Key Takeaways

- Deploying machine learning in production is hard
- Platforms are critical for enabling data scientist productivity
 - Plan for multiple apps... always
 - To ensure enabling rapid identification of areas of improvement and efficacy of new approaches provide
 - Monitoring services
 - Experimentation frameworks
- Identify opportunities for reusability in all aspects, even your machine learning pipelines
- Help simplify the process of experimenting, deploying, and iterating

Thank You

3