
WITH GREAT
SCALABILITY
COMES GREAT
RESPONSIBILITY

@BigDana

Dana Engebretson

@BigDana

Queen of the Amazons @BigDana

Amazon Warriors*

*Our services in AWS

@BigDana

@BigDana

@BigDana

Dana Engebretson
Performance Engineer

SPS Commerce

@BigDana

Attempt 0: Python Multiprocessing on an EC2 Instance

Attempt 0.5: Python Multiprocessing on a Spot Instance

Attempt 1: Lambdas Orchestrated by Step Functions

Attempt 2: Using Event Triggers with S3

Attempt 3: Rate limiting with Queues and Cloudwatch triggered Lambdas

Building a Data Pipeline

@BigDana

Attempt 0: Python Multiprocessing on an EC2 Instance

Attempt 0.5: Python Multiprocessing on a Spot Instance

Attempt 1: Lambdas Orchestrated by Step Functions

Attempt 2: Using Event Triggers with S3

Attempt 3: Rate limiting with Queues and Cloudwatch triggered Lambdas

Building a Data Pipeline

@BigDana

Attempt 0: Python Multiprocessing on an EC2 Instance

Attempt 0.5: Python Multiprocessing on a Spot Instance

Attempt 1: Lambdas Orchestrated by Step Functions

Attempt 2: Using Event Triggers with S3

Attempt 3: Rate limiting with Queues and Cloudwatch triggered Lambdas

Building a Data Pipeline

@BigDana

Attempt 0: Python Multiprocessing on an EC2 Instance

Attempt 0.5: Python Multiprocessing on a Spot Instance

Attempt 1: Lambdas Orchestrated by Step Functions

Attempt 2: Using Event Triggers with S3

Attempt 3: Rate limiting with Queues and Cloudwatch triggered Lambdas

Building a Data Pipeline

@BigDana

Attempt 0: Python Multiprocessing on an EC2 Instance

Attempt 0.5: Python Multiprocessing on a Spot Instance

Attempt 1: Lambdas Orchestrated by Step Functions

Attempt 2: Using Event Triggers with S3

Attempt 3: Rate limiting with Queues and Cloudwatch triggered Lambdas

Building a Data Pipeline

@BigDana

Attempt 0: Python Multiprocessing on an EC2 Instance

Attempt 0.5: Python Multiprocessing on a Spot Instance

Attempt 1: Lambdas Orchestrated by Step Functions

Attempt 2: Using Event Triggers with S3

Attempt 3: Rate limiting with Queues and Cloudwatch triggered Lambdas

Building a Data Pipeline

@BigDana

The Oracle*

*one of our monitoring vendors

@BigDana

Hermes: the messenger God*

*Our Vendor’s Api

The Oracle*

*one of our monitoring vendors

@BigDana

@BigDana

@BigDana

FETCH ME
ALL MY DATA
FOR ALL MY
AMAZON

WARRIORS
PLEASE!

The Oracle*

*one of our monitoring vendors

Hermes: the messenger God*

*Our Vendor’s Api

Hermes: the messenger God*

*Our Vendor’s Api

@BigDana

The Oracle*

*one of our monitoring vendors

@BigDana

The Oracle*

*one of our monitoring vendors

Hermes: the messenger God*

*Our Vendor’s Api

@BigDana

HERE IS ALL YOUR DATA!

The Oracle*

*one of our monitoring vendors

Hermes: the messenger God*

*Our Vendor’s Api

@BigDana

@BigDana

Hermes: the messenger God*

*Our Vendor’s Api

@BigDana

FETCH ME ALL MY
AMAZON WARRIOR TROOPS*

PLEASE!

*grouped by micro-service

The Oracle*

*one of our monitoring vendors

@BigDana

The Oracle*

*one of our monitoring vendors

Hermes: the messenger God*

*Our Vendor’s Api

@BigDana

@BigDana

The Oracle*

*one of our monitoring vendors

@BigDana

Hermes: the messenger God*

*Our Vendor’s Api

@BigDana

TROUP 2

@BigDana@BigDana

Hermes: the messenger God*

*Our Vendor’s Api

@BigDana@BigDana

The Oracle*

*one of our monitoring vendors

TROUP 2 troop 3TROUP 1

HERE ARE YOUR
AMAZON WARRIOR TROOPS!

@BigDana@BigDana

Hermes: the messenger God*

*Our Vendor’s Api

@BigDana@BigDana@BigDana

The Oracle*

*one of our monitoring vendors

troop 2 troop 3troop 1

@BigDana

zFOR TROOP 1, FETCH ME MY
AMAZON WARRIORS PLEASE!

The Oracle*

*one of our monitoring vendors

Hermes: the messenger God*

*Our Vendor’s Api

troop 2 troop 3troop 1

@BigDana

The Oracle*

*one of our monitoring vendors

@BigDana

Hermes: the messenger God*

*Our Vendor’s Api

@BigDana

troop 2 troop 3troop 1

@BigDana

The Oracle*

*one of our monitoring vendors

Hermes: the messenger God*

*Our Vendor’s Api

troop 2 troop 3troop 1

@BigDana

The Oracle*

*one of our monitoring vendors

Hermes: the messenger God*

*Our Vendor’s Api

TROUP 1

amazon warrior 1 amazon warrior 2

TROUP 2 TROUP 3TROUP 1 troop 2 troop 3troop 1HERE ARE YOUR
AMAZON WARRIORS

FOR TROOP 1!

@BigDana

amazon warrior 1 amazon warrior 2

The Oracle*

*one of our monitoring vendors

Hermes: the messenger God*

*Our Vendor’s Api

troop 2 troop 3troop 1

amazon warrior 1 amazon warrior 2

Hermes: the messenger God*

*Our Vendor’s Api

@BigDana

FOR AMAZON WARRIOR 1,
FETCH ME MY DATA GROUPS

PLEASE!

The Oracle*

*one of our monitoring vendors

troop 2 troop 3troop 1

@BigDana

The Oracle*

*one of our monitoring vendors

Hermes: the messenger God*

*Our Vendor’s Api

amazon warrior 1 amazon warrior 2

troop 2 troop 3troop 1

@BigDana

The Oracle*

*one of our monitoring vendors

amazon warrior 1 amazon warrior 2

Hermes: the messenger God*

*Our Vendor’s Api

troop 2 troop 3troop 1

TROUP 2TROUP 1

amazon warrior 2

TROUP 2

Hermes: the messenger God*

*Our Vendor’s Api

@BigDana

data group 1 data group 2

The Oracle*

*one of our monitoring vendors

amazon warrior 1

data group 3

troop 2 troop 3troop 1

HERE ARE YOUR DATA GROUPS
FOR AMAZON WARRIOR 1!

@BigDana

The Oracle*

*one of our monitoring vendors

amazon warrior 2

Hermes: the messenger God*

*Our Vendor’s Api

@BigDana

data group 1 data group 2

amazon warrior 1

data group 3

troop 2 troop 3troop 1

amazon warrior 2

Hermes: the messenger God*

*Our Vendor’s Api

@BigDana

data group 1 data group 2

amazon warrior 1

data group 3

@BigDana

FOR AMAZON WARRIOR 1,
AND DATA GROUP 1,

FETCH ME THE DATA PLEASE!

The Oracle*

*one of our monitoring vendors

troop 2 troop 3troop 1

@BigDana

The Oracle*

*one of our monitoring vendors

@BigDana

Hermes: the messenger God*

*Our Vendor’s Api

amazon warrior 2

data group 1 data group 2 data group 3

amazon warrior 1

troop 2 troop 3troop 1

@BigDana

The Oracle*

*one of our monitoring vendors

amazon warrior 2

Hermes: the messenger God*

*Our Vendor’s Api

@BigDana

data group 1 data group 2

amazon warrior 1

data group 3

troop 2 troop 3troop 1

amazon warrior 2

Hermes: the messenger God*

*Our Vendor’s Api

data group 2

amazon warrior 1

data group 3

@BigDana

The Oracle*

*one of our monitoring vendors

data

data group 1

TROUP 1 troop 2 troop 3troop 1HERE IS YOUR DATA
FOR AMAZON WARRIOR 1

AND DATA GROUP 1!

amazon warrior 2

Hermes: the messenger God*

*Our Vendor’s Api

data group 2

amazon warrior 1

data group 3

@BigDana

The Oracle*

*one of our monitoring vendors

data

data group 1

troop 2 troop 3troop 1

@BigDana

35,000-65,000
API CALLS!

HOW SHOULD I WRITE THE
CODE TO COMMUNICATE WITH
HERMES?

@BigDana

@BigDana

Attempt 0: Python Multiprocessing on an EC2 Instance

Attempt 0.5: Python Multiprocessing on a Spot Instance

Attempt 1: Lambdas Orchestrated by Step Functions

Attempt 2: Using Event Triggers with S3

Attempt 3: Rate limiting with Queues and Cloudwatch triggered Lambdas

Building a Data Pipeline

Initial Solution:

Python Multiprocessing on an EC2 instance - continuously running

Easy for me to implement

not cheap

horizontal scaling seemed overkill

on-going maintenance
and management

@BigDana

Initial Solution:

Python Multiprocessing on an EC2 instance - intermittently running

Easy for me to implement

cheaper

still not cheap enough

horizontal scaling seemed overkill

on-going maintenance
and management

@BigDana

@BigDana

Attempt 0: Python Multiprocessing on an EC2 Instance

Attempt 0.5: Python Multiprocessing on a Spot Instance

Attempt 1: Lambdas Orchestrated by Step Functions

Attempt 2: Using Event Triggers with S3

Attempt 3: Rate limiting with Queues and Cloudwatch triggered Lambdas

Building a Data Pipeline

@BigDana

Attempt 0: Python Multiprocessing on an EC2 Instance

Attempt 0.5: Python Multiprocessing on a Spot Instance

Attempt 1: Lambdas Orchestrated by Step Functions

Attempt 2: Using Event Triggers with S3

Attempt 3: Rate limiting with Queues and Cloudwatch triggered Lambdas

Building a Data Pipeline

Revision:

significantly cheaper
You need to configure
how to restart where

the previous process left off

@BigDana

Python Multiprocessing on an EC2 instance
a Spot instance

Should I try Serverless?

@BigDana

Owning your own server : Owning your own car @BigDana

The Cloud: Leasing a car

Owning your own car: Owning your own server @BigDana

The Cloud : Leasing a car

Owning your own server : Owning your own car

Spot Instances: Renting a car

@BigDana

The Cloud: Leasing a car

Owning your own server: Owning your own car

Spot Instances: Renting a car

Lambdas: car2go

@BigDana

@BigDana

Attempt 0: Python Multiprocessing on an EC2 Instance

Attempt 0.5: Python Multiprocessing on a Spot Instance

Attempt 1: Lambdas Orchestrated by Step Functions

Attempt 2: Using Event Triggers with S3

Attempt 3: Rate limiting with Queues and Cloudwatch triggered Lambdas

Building a Data Pipeline

@BigDana

Attempt 0: Python Multiprocessing on an EC2 Instance

Attempt 0.5: Python Multiprocessing on a Spot Instance

Attempt 1: Lambdas Orchestrated by Step Functions

Attempt 2: Using Event Triggers with S3

Attempt 3: Rate limiting with Queues and Cloudwatch triggered Lambdas

Building a Data Pipeline

Lambda: a Function as a Service
@BigDana

Lambda: a Function as a Service

Compute:
proportional

to memory

Time:
max of

5 minutes

Memory:
max of 1536 MB

@BigDana

Lambda: Function as a Service
Compute

Time

Memory
Dependency
Zip File size

250 MB uncompressed
code/dependencies

@BigDana

@BigDana

@BigDana

@BigDana

@BigDana

@BigDana

@BigDana

@BigDana

Lambda: Function as a Service
Compute

Time

Memory
Dependency
Zip File size

250 MB uncompressed
code/dependencies

@BigDana

fastparquet
didn’t fit

Lambda: Function as a Service

Compute

Time

Memory

Dependency
Zip File size

@BigDana

Ephemeral
Disk Capacity:

max of 512 MB

Lambda: Function as a Service

Compute

Time

Memory
Ephemeral

Disk Capacity

Dependency
Zip File size

@BigDana

concurrent executions:
default max of 1000 per account

Lambda: Function as a Service

Compute

Time

Memory
Ephemeral

Disk Capacity

Dependency
Zip File size

of file
descriptors

of processes
and threads

Invoke
request body
payload size

@BigDana

concurrent executions

Lambda: Function as a Service

Compute

Time

Memory
Ephemeral

Disk Capacity

Dependency
Zip File size

of file
descriptors

of processes
and threads

Invoke
request body
payload size

Linux

@BigDana

concurrent executions

@BigDana

Step Functions

start

end

@BigDana

Choice State

start

end

choice

@BigDana

Parallel Processing
Step Functions can do

start

end

@BigDana

start

end

start

end

…

Dynamic Fan Out
Parallel Processing

Parallel Processing
Step Functions can do

vs

@BigDana

@BigDana

start

…

Dynamic Fan Out
Parallel Processing

@BigDana

start

Defined Fan Out
Parallel Processing

vs
……

start

send to an EC2 instance

@BigDana

start

Defined Fan Out
Parallel Processing

or EC2

……

Step Functions

easy to implement
workflow management for
lambdas and ec2 instances

built-in back off policy
for retrying lambdas

doesn’t yet natively
support a dynamic

one-to-many
fan out architecture

of lambdas

@BigDana

@BigDana

@BigDana

Attempt 0: Python Multiprocessing on an EC2 Instance

Attempt 0.5: Python Multiprocessing on a Spot Instance

Attempt 1: Lambdas Orchestrated by Step Functions

Attempt 2: Using Event Triggers with S3

Attempt 3: Rate limiting with Queues and Cloudwatch triggered Lambdas

Building a Data Pipeline

@BigDana

Attempt 0: Python Multiprocessing on an EC2 Instance

Attempt 0.5: Python Multiprocessing on a Spot Instance

Attempt 1: Lambdas Orchestrated by Step Functions

Attempt 2: Using Event Triggers with S3

Attempt 3: Rate limiting with Queues and Cloudwatch triggered Lambdas

Building a Data Pipeline

S3 Bucket
(Simple Storage Service)

@BigDana

Using Event Triggers

troops/

amazon_warriors/

data_groups/

data/

S3 Bucket
(Simple Storage Service)

@BigDana

Using Event Triggers

start

S3 Bucket
(Simple Storage Service)

@BigDana

troops/

amazon_warriors/

data_groups/

data/

Using Event Triggers

start

S3 Bucket
(Simple Storage Service)

@BigDana

troops/

amazon_warriors/

data_groups/

data/

Using Event Triggers

start

S3 Bucket
(Simple Storage Service)

Circular dependency

@BigDana

troops/

amazon_warriors/

data_groups/

data/

Using Event Triggers

start

S3 Bucket
(Simple Storage Service)

@BigDana

troops/

amazon_warriors/

data_groups/

data/

Using Event Triggers

start

S3 Bucket
(Simple Storage Service)

@BigDana

troops/

amazon_warriors/

data_groups/

data/

@BigDana

Using Event Triggers

start

S3 Bucket
(Simple Storage Service)

@BigDana

troops/

amazon_warriors/

data_groups/

data/

Using Event Triggers

start

S3 Bucket
(Simple Storage Service)

@BigDana

troops/

amazon_warriors/

data_groups/

data/

Using Event Triggers

start

S3 Bucket
(Simple Storage Service)

@BigDana

troops/

amazon_warriors/

data_groups/

data/

@BigDana

Too Fast

s3 is highly scalable and durable

Nested event triggers creates
super fast multiprocessing

You can’t control the rate
the lambdas get spawned

It will only retry a lambda 2 times
(can extend this manually)

You can lose in-flight tasks
if there is a system outage

Using Event Triggers with S3

@BigDana

@BigDana

@BigDana
You can’t run into a rate limit

if you never scale.

@BigDana

Attempt 0: Python Multiprocessing on an EC2 Instance

Attempt 0.5: Python Multiprocessing on a Spot Instance

Attempt 1: Lambdas Orchestrated by Step Functions

Attempt 2: Using Event Triggers with S3

Attempt 3: Rate limiting with Queues and Cloudwatch triggered Lambdas

Building a Data Pipeline

@BigDana

Attempt 0: Python Multiprocessing on an EC2 Instance

Attempt 0.5: Python Multiprocessing on a Spot Instance

Attempt 1: Lambdas Orchestrated by Step Functions

Attempt 2: Using Event Triggers with S3

Attempt 3: Rate limiting with Queues and Cloudwatch triggered Lambdas

Building a Data Pipeline

SQS Queues

@BigDana

(Simple Queue Service)

@BigDana

@BigDana

@BigDana

@BigDana

@BigDana

@BigDana

@BigDana

@BigDana

@BigDana

@BigDana

@BigDana

@BigDana

@BigDana

@BigDana

Cloudwatch Rules

@BigDana

Troops Amazon Warriors Data Groups

Rate limiting with Queues and Cloudwatch triggered Lambdas

raw_data/

processed/

data/

@BigDana

Rate limiting with Queues and Cloudwatch triggered Lambdas

raw_data/

processed/

raw_data/

processed/

@BigDana

Data GroupsTroops Amazon Warriors

@BigDana
Queue Depth Over Time

0

7500

15000

22500

30000

12 AM 2 AM 4 AM 6 AM 8 AM 10 AM 12 PM 2 PM 4 PM 6 PM 8 PM 10 PM

AMAZON WARRIOR TROOPS AMAZON WARRIORS DATA GROUPS

raw_data/

processed/

Rate limiting with SQS Queues and Cloudwatch triggered Lambdas

Dead Letter Queues

@BigDana

Data GroupsTroops Amazon Warriors

@BigDana
Queue Depth Over Time

0

7500

15000

22500

30000

12 AM 2 AM 4 AM 6 AM 8 AM 10 AM 12 PM 2 PM 4 PM 6 PM 8 PM 10 PM

AMAZON WARRIOR TROOPS AMAZON WARRIORS DATA GROUPS

@BigDana
Queue Depth Over Time

0

7500

15000

22500

30000

12 AM 2 AM 4 AM 6 AM 8 AM 10 AM 12 PM 2 PM 4 PM 6 PM 8 PM 10 PM

AMAZON WARRIOR TROOPS AMAZON WARRIORS DATA GROUPS

Rate limiting with Queues and Cloudwatch triggered Lambdas
@BigDana

Rate limiting with Queues and Cloudwatch triggered Lambdas
@BigDana

Rate limiting with Queues and Cloudwatch triggered Lambdas
@BigDana

Rate limiting with Queues and Cloudwatch triggered Lambdas
@BigDana

highly scalable and resilient

can store failed tasks indefinitely

gives you control to rate limit the
processing of the tasks in the queue

a small task can wait in line on a
queue that already has many tasks

SQS Queues:

@BigDana

allows for quite specific schedules
fastest schedule is

every 1 minute

doesn’t scale responsively to
your queue depth

Lambdas triggered by Cloudwatch Rules

@BigDana

@BigDana

IT TAKES REAL CHARACTER TO ADMIT ONES FAILURES —
AND NOT A LITTLE WISDOM TO TAKE YOUR PROFITS FROM DEFEAT

@BigDana

Lambdas are not yet suitable for quick tasks if they require
large dependencies

Step Functions does not yet provide dynamic fan out
parallel processing

Event triggers don’t yet allow you to rate limit

We can’t yet trigger a Lambda based off an SQS Queue depth

Takeaways

@BigDana

Expect Limits

Expect to Exceed those limits

Expect you will have to handle failures

Lessons Learned

@BigDana

Invest in training new hires

Decouple the learning process of your build deploy pipeline
and building serverless architecture

Reflections for Managers

@BigDana

Victoria Pierce
@thesecondshade

June 5th 2017:
 Joined SPS Commerce as a Site Reliability Engineer Intern

July 12th 2017:
 Deployed her first lambda

As of November 15th 2017:
 Maintains 6 serverless applications

@BigDana

Thank you!

Dana Engebretson
Performance Engineer

SPS Commerce

Questions?

