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Revision:

significantly cheaper
You need to configure  
how to restart where  

the previous process left off
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Lambda: a Function as a Service

Compute:  
proportional  

to memory

Time:  
max of 

5 minutes

Memory:  
max of 1536 MB
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Lambda: Function as a Service
Compute

Time
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Dependency  
Zip File size
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Lambda: Function as a Service
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250 MB uncompressed  
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Lambda: Function as a Service

Compute

Time

Memory

Dependency  
Zip File size

@BigDana

Ephemeral  
Disk Capacity:  

max of 512 MB



Lambda: Function as a Service

Compute

Time

Memory
Ephemeral  

Disk Capacity

Dependency  
Zip File size
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start

…

Dynamic Fan Out 
Parallel Processing
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start

Defined Fan Out 
Parallel Processing

vs
……



start

send to an EC2 instance
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start

Defined Fan Out 
Parallel Processing

or EC2

……



Step Functions

easy to implement  
workflow management for  
lambdas and ec2 instances 

built-in back off policy  
for retrying lambdas

doesn’t yet natively  
support a dynamic  

one-to-many  
fan out architecture  

of lambdas
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S3 Bucket 
(Simple Storage Service)
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Using Event Triggers

troops/ 

amazon_warriors/ 

data_groups/ 
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S3 Bucket 
(Simple Storage Service)
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Using Event Triggers

start

S3 Bucket 
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Circular dependency
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Using Event Triggers

start

S3 Bucket 
(Simple Storage Service)
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Too Fast



s3 is highly scalable and durable 

Nested event triggers creates 
super fast multiprocessing

You can’t control the rate  
the lambdas get spawned 

It will only retry a lambda 2 times 
(can extend this manually) 

You can lose in-flight tasks  
if there is a system outage

Using Event Triggers with S3
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You can’t run into a rate limit 

if you never scale. 
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SQS Queues
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(Simple Queue Service)
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Cloudwatch Rules
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Troops Amazon Warriors Data Groups

Rate limiting with Queues and Cloudwatch triggered Lambdas

raw_data/

processed/

data/

@BigDana



Rate limiting with Queues and Cloudwatch triggered Lambdas

raw_data/

processed/

raw_data/

processed/
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Data GroupsTroops Amazon Warriors
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raw_data/

processed/

Rate limiting with SQS Queues and Cloudwatch triggered Lambdas

Dead Letter Queues
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Rate limiting with Queues and Cloudwatch triggered Lambdas
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Rate limiting with Queues and Cloudwatch triggered Lambdas
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Rate limiting with Queues and Cloudwatch triggered Lambdas
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Rate limiting with Queues and Cloudwatch triggered Lambdas
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highly scalable and resilient 

can store failed tasks indefinitely 

gives you control to rate limit the  
processing of the tasks in the queue

a small task can wait in line on a  
queue that already has many tasks

SQS Queues:
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allows for quite specific schedules
fastest schedule is  

every 1 minute 

doesn’t scale responsively to  
your queue depth 

Lambdas triggered by Cloudwatch Rules
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IT TAKES REAL CHARACTER TO ADMIT ONES FAILURES —  
AND NOT A LITTLE WISDOM TO TAKE YOUR PROFITS FROM DEFEAT
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Lambdas are not yet suitable for quick tasks if they require  
large dependencies 

Step Functions does not yet provide dynamic fan out  
parallel processing 

Event triggers don’t yet allow you to rate limit  

We can’t yet trigger a Lambda based off an SQS Queue depth

Takeaways
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Expect Limits 

Expect to Exceed those limits 

Expect you will have to handle failures

Lessons Learned
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Invest in training new hires 

Decouple the learning process of your build deploy pipeline  
and building serverless architecture

Reflections for Managers
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Victoria Pierce
@thesecondshade 

June 5th 2017:  
  Joined SPS Commerce as a Site Reliability Engineer Intern 

July 12th 2017: 
  Deployed her first lambda 

As of November 15th 2017: 
  Maintains 6 serverless applications 
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Thank you! 

Dana Engebretson 
Performance Engineer 

SPS Commerce 

Questions?


