
Reddit’s Architecture
And how it’s broken over the years

Neil Williams
QCon SF, 13 November 2017

What is Reddit?
Reddit is the frontpage of the internet

A social network where there are tens of thousands of communities
around whatever passions or interests you might have

It’s where people converse about the things that
are most important to them

Reddit by the numbers

Alexa Rank (US/World)

MAU

Communities

Posts per day

Comments day

Votes per day

Searches per Day

4th/7th

320M

1.1M

1M

5M

75M

70M

Major
components

The stack that serves reddit.com.

Focusing on just the core experience.

CDN

Frontend
API

r2

ListingSearch

Rec.Thing

Major
components

A work in progress.

This tells you as much about the
organization as it does our tech.

CDN

Frontend
API

r2

ListingSearch

Rec.Thing

r2: The monolith

The oldest single component of
Reddit, started in 2008, and written in
Python.

CDN

Frontend
API

r2

ListingSearch

Rec.Thing

Node.js frontend
applications

Modern frontends using shared
server/client code.

CDN

Frontend
API

r2

ListingSearch

Rec.Thing

New backend
services

Written in Python.

Splitting off from r2.

Common library/framework to
standardize.

Thrift or HTTP depending on clients.

CDN

Frontend
API

r2

ListingSearch

Rec.Thing

CDN

Send requests to distinct stacks
depending on domain, path, cookies,
etc.

CDN

Frontend
API

r2

ListingSearch

Rec.Thing

r2 Deep Dive

The original Reddit.

Much more complex than any of the
other components.

CDN

Frontend API

r2

Listing
Search Rec.Thing

Load Balancers

App App App

Job

Cassandra PostgreSQL

r2

r2: Monolith

Monolithic Python application.

Same code deployed to all servers,
but servers used for different tasks.

CDN

Frontend API

Listing
Search Rec.Thing

Load Balancers

App App App

Job

Cassandra PostgreSQL

r2

r2: Load
Balancers

Load balancers route requests to
distinct “pools” of otherwise identical
servers.

CDN

Frontend API

Listing
Search Rec.Thing

Load Balancers

App App App

Job

Cassandra PostgreSQL

r2

r2: Job Queues

Many requests trigger asynchronous
jobs that are handled in dedicated
processes.

CDN

Frontend API

Listing
Search Rec.Thing

Load Balancers

App App App

Job

Cassandra PostgreSQL

r2

r2: Things

Many core data types are stored in the
Thing data model.

This uses PostgreSQL for persistence
and memcached for read
performance.

CDN

Frontend API

Listing
Search Rec.Thing

Load Balancers

App App App

Job

Cassandra PostgreSQL

r2

r2: Cassandra

Apache Cassandra is used for most
newer features and data with heavy
write rates.

CDN

Frontend API

Listing
Search Rec.Thing

Load Balancers

App App App

Job

Cassandra PostgreSQL

Listings

Listings

The foundation of Reddit: an ordered
list of links.

Naively computed with a SQL query:
SELECT * FROM links ORDER BY
hot(ups, downs);

Cached Results

Rather than querying every time, we
cache the list of Link IDs.

Just run the query and cache the
results.

Invalidate cache on new submissions
and votes.

r/rarepuppers, sort by hot

[123, 124, 125, …]

Cached Results

Easy to look up the links by ID once
listing is fetched. r/rarepuppers, sort by hot

[123, 124, 125, …]

Link #123: title=doggo
Link #124: title=pupper does a nap

r2

Vote Queues

Votes invalidate a lot of cached
queries.

Also have to do expensive anti-cheat
processing.

Deferred to offline job queues with
many processors.

CDN

Frontend API

Listing
Search Rec.Thing

Load Balancers

App App App

Job

Cassandra PostgreSQL

Mutate in place

Eventually, even running the query is
too slow for how quickly things
change.

Add sort info to cache and modify the
cached results in place.

Locking required.

[(123, 10), (124, 8), (125, 8), …]

Link #125

[(123, 10), (125, 9), (124, 8), …]

r2

“Cache”

This isn’t really a cache anymore:
really a denormalized index of links.

Data is persisted to Cassandra, reads
are still served from memcached.

CDN

Frontend API

Listing
Search Rec.Thing

Load Balancers

App App App

Job

Cassandra PostgreSQL

Vote queue
pileups

Mid 2012

We started seeing vote queues fill up
at peak traffic hours.

A given vote would wait in queue for
hours before being processed.
Delayed effects on site noticeable by
users.

https://commons.wikimedia.org/wiki/File:Miami_traffic_jam,_I-95_North_rush_hour.jpg

Scale out?

Adding more consumer processes
made the problem worse.

Observability

Basic metrics showed average
processing time of votes way higher.

No way to dig into anything more
granular.

Lock contention

Added timers to various portions of
vote processing.

Time spent waiting for the cached
query mutation locks was much higher
during these pileups.

r/news, sort by hot

Vote
Processor

Vote
Processor

Vote
Processor

Vote
Processor

Partitioning

Put votes into different queues based
on the subreddit of the link being
voted on.

Fewer processors vying for same
locks concurrently.

r/news r/funny r/science r/programming

r/news r/funny r/science r/programming

Smooth sailing!

Slow again

Late 2012

This time, the average lock contention
and processing times look fine.

p99

The answer was in the 99th percentile
timers.

A subset of votes were performing
very poorly.

Added print statements to get to the
bottom of it.

An outlier

Vote processing updated all affected
listings.

This includes ones not related to
subreddit, like the domain of the
submitted link.

A very popular domain was being
submitted in many subreddits!

domain:imgur.com, sort by hot

Vote
Processor

(partition 1)

Vote
Processor

(partition 2)

Vote
Processor

(partition 3)

Vote
Processor

(partition 4)

Split up
processing

Handle different types of queries in
different queues so they never work
cross-partition.

Subreddit queries

Domain queries

Profile queries

Anti-cheating

Link #125

Learnings

Timers give you a cross section.

p99 shows you problem cases.

Have a way to dig into those
exceptional cases.

Learnings

Locks are bad news for throughput.

But if you must, use the right
partitioning to reduce contention.

Lockless cached
queries

New data model we’re trying out
which allows mutations without
locking.

More testing needed.

The future of
listings

Listing service: extract the basics
and rethink how we make listings.

Use machine learning and offline
analysis to build up more personalized
listings.

CDN

Frontend
API

r2

ListingSearch

Rec.Thing

Things

r2

Thing

r2’s oldest data model.

Stores data in PostgreSQL with heavy
caching in memcached.

Designed to allow extension within a
safety net.

CDN

Frontend API

Listing
Search Rec.Thing

Load Balancers

App App App

Job

Cassandra PostgreSQL

Tables

One Thing type per “noun” on the site.

Each Thing type is represented by a
pair of tables in PostgreSQL.

Each row in the thing table represents
one Thing instance.

The columns in the thing table are
everything needed for sorting and
filtering in early Reddit.

Thing

reddit_thing_link

id | ups | downs | deleted

---+-----+-------+--------

1 | 1 | 0 | f

2 | 99 | 10 | t

3 | 345 | 3 | f

Thing

Many rows in the data table will
correspond to a single instance of a
Thing.

These make up a key/value bag of
properties of the thing.

reddit_data_link

thing_id | key | value

---------+-------+--------

 1 | title | DAE think

 1 | url | http://...

 2 | title | Cat

 2 | url | http://...

 3 | title | Dog!

 3 | url | http://...

Thing in
PostgreSQL

Each Thing lives in a database cluster.

Primary that handles writes. A number
of read-only replicas.

Asynchronous replication.

Primary

Read Replicas

Thing in
PostgreSQL

r2 connects directly to databases.

Use replicas to handle reads.

If a database seemed down, remove it
from connection pool.

Primary

Read Replicas

r2

Thing in
memcached

Whole Thing objects serialized and
added to memcached.

r2 reads from memcached first and
only hits PostgreSQL on cache miss.

r2 writes changes directly to
memcached at same time it does to
PostgreSQL.

Primary

Read Replicas

r2

Incident

2011

Alerts indicating replication has
crashed on a replica.

It is getting more out of date as time
goes on.

Primary

Read Replicas

r2

Incident

Immediate response is to remove
broken replica and rebuild.

Diminished capacity, but no direct
impact on users.

Primary

Read Replicas

r2

Incident

Afterwards, we see references left
around to things that don’t exist in the
database.

This causes the page to crash since it
can’t find all the necessary data.

r/example hot links: #1, #2, #3, #4

reddit_thing_link

id | ups | downs | deleted

---+-----+-------+--------

1 | 1 | 0 | f

2 | 99 | 10 | t

4 | 345 | 3 | f

Incident

The issue always starts with a primary
saturating its disks. Primary

Read Replicas

r2

Incident

The issue always starts with a primary
saturating its disks.

Upgrade the hardware!

Primary

Read Replicas

r2

How unsatisfying...

A clue

Primary is bumped offline momentarily
during a routine maintenance a few
months later.

The old replication problem recurs on
a secondary database.

The failover code

List of databases always starts with
primary.

live_databases = [db for db in databases if db.alive]
primary = live_databases[0]
secondaries = live_databases[1:]

…

if query.type == “select”:
 random.choice(secondaries).execute(query)
elif query.type in (“insert”, “update”):
 primary.execute(query)

Oops

The failover code was failing out the
primary and writing to a secondary.

- live_databases = [db for db in databases if db.alive]
- primary = live_databases[0]
- secondaries = live_databases[1:]

+ primary = databases[0]
+ secondaries = [db for db in databases[1:] if
db.alive]

Learnings

Layers of protection help. Security
controls can also be availability
features.

Learnings

If you denormalize, build tooling to
make your data consistent again.

Discovery

New services use service discovery to
find databases.

This reduces in-app complexity.

Thing service

Liberating these data models from
r2.

This provides access to the data for
other services.

Forces untangling complicated legacy
code.

CDN

Frontend
API

r2

ListingSearch

Rec.Thing

Comment Trees

Comment Trees

Tree of comments showing structure
of reply threads.

Comment Trees

It’s also possible to link directly to
comments deep in tree with context.

Comment Trees

Expensive to figure out the tree
metadata in-request, so we
precompute and store it.

children = {
 1: [

2,
3,
4,
5,

 ...
],
 2: [

6
],
 74656: [

80422
],
 ...
}

r2

Comment Tree
Queues

Updating materialized tree structure is
expensive.

Deferred to offline job queues.

Process updates in batches to reduce
number of distinct changes.

CDN

Frontend API

Listing
Search Rec.Thing

Load Balancers

App App App

Job

Cassandra PostgreSQL

Comment Tree
Queues

Updating tree structure is sensitive to
ordering.

Hard to get into the tree if your parent
isn’t there!

Inconsistencies trigger automatic
recompute.

Fastlane

Massive threads hog resources. Slow
themselves and the rest of the site
down.

Fastlane is dedicated queue for
manually flagged threads to get
isolated processing capacity.

https://commons.wikimedia.org/wiki/File:404HOV_lane.png

Incident

Early 2016

Major news event happening. Massive
comment thread discussing it actively.

Busy thread is overwhelming
processing and slowing down
comments across the site.

Incident

We fastlane the news thread to isolate
its effects.

Incident

Suddenly, the fastlane queue starts
growing exponentially.

Fills available memory on queue
broker.

Incident

No new messages can be added to
queues now.

Site actions like voting, commenting,
and posting links are all frozen.

Self-“healing”

The main queue was backed up.

Switching to fastlane allowed new
messages to skip the queue.

Tree is now inconsistent, this causes
recompute messages to flood the
queue on every pageview.

Start over

We had to restart the queue broker
and lose existing messages to get
things back to normal.

This then meant a bunch of data
structures needed to be recomputed
afterwards.

Queue Quotas

We now set maximum queue lengths
so that no one queue can consume all
resources.

User-visible, but scope of impact
limited.

Quotas are important for isolation.

Autoscaler

Autoscaler

Save money off peak.

Automatically react to higher demand.

Autoscaler

Watch utilization metrics and
increase/decrease desired capacity
accordingly.

Let AWS’s autoscaling groups handle
the work of launching/terminating
instances.

Autoscaler

Daemon on host registers existence of
host.

Autoscaler uses this to determine
health of hosts.

App App

ZooKeeper

“Autoscaled”
memcached

Cache servers were managed with
this system as well.

No scaling out/in but automatic
replacement of failed nodes.

App App

ZooKeeper

Incident

Mid 2016

Migrating entire site from EC2 Classic
to VPC.

Last servers to move are the
ZooKeeper cluster.

The plan

1. Launch new ZooKeeper cluster in VPC.
2. Stop all autoscaler services.
3. Repoint autoscaler agents on all servers to new cluster.
4. Repoint autoscaler services to new cluster.
5. Restart autoscaler services.
6. Nobody knows anything happened.

The reality

1. ✓ Launch new ZooKeeper cluster in VPC.
2. ✓ Stop all autoscaler services.
3. Start repointing autoscaler agents on all servers to new cluster.

And then suddenly hundreds of servers get terminated, including many caches.

What happened?

Puppet agent ran and re-enabled the autoscaler services.

These services were still pointed at the old ZooKeeper cluster.

Anything migrated to the new cluster was seen as unhealthy and terminated.

Recovery

Realize very quickly why the servers all went down.

Re-launch many servers. This just takes time.

Lost cache servers came back cold. PostgreSQL completely slammed with
reads. Have to gently re-warm caches.

Learnings

Tools that take destructive actions
need sanity checks.

Learnings

Process improvements needed:
peer-reviewed checklists for complex
procedures.

Learnings

Stateful services are very different
from stateless ones, don’t use the
same tooling for them!

Autoscaler v2

The next generation autoscaler uses
our service discovery tooling for health
checking.

Autoscaler v2

Importantly, it will refuse to take
actions on too many servers at once.

Summary

Remember the human

Observability is key.

People make mistakes. Use multiple layers of safeguards.

Simple and easy to understand goes a long way.

Thanks!

Neil Williams
u/spladug or @spladug

This is just the beginning, come join us!
https://reddit.com/jobs

Infra/Ops team AMA, Thursday in r/sysadmin
https://redd.it/7cl9wv

https://reddit.com/jobs
https://redd.it/7cl9wv

