
Yu Ding, Ran Duan , Long Li , Yueqiang Cheng , Lenx Wei

Rust SGX SDK:
Towards Memory Safety in Intel SGX

CONTENTS

Why SGX？

PART ONE

1

Why Rust？

PART TWO

2

Rust SGX SDK

PART THREE

3

PART 1
Why SGX？

Why SGX

War in memory

• Ring	3	vs	Ring	0
• Ring	0	vs	Hypervisor	(Ring	-1)
• Hypervisor	vs	SMM	(Ring	-2)
• SMM	vs	AMT/ME	(Ring	-3)

Why SGX

War in memory

Why SGX

Hardware	based	trusted	execution	environment

• Intel	System	Management	Mode
• Intel	Management	Engine
• Trusted	Platform	Module	(TPM)
• AMD	Platform	Security	Processor
• DRTM	(Dynamic	Root	of	Trust	for	Measurement)
• ARM	Trustzone
• Intel	Trusted	Execution	Technology	
• Intel	SGX

Why SGX：Memory Encryption Engine

Without	SGX SGX	Enforced

Figures are from Intel ISCA'15 SGX Turtorial

Why SGX：Root of Trust

• Hardware	Enforced	Security:	MEE
• Remote	Attestation	Support:	Build	trust	with	Intel
• Data	Sealing:	Transfer/store	data

PART 2
Why Rust？

• Guarantees	memory	safety
• No	data	racing
• Blazingly	fast

Endorsed	by	Mozilla,	competing	with	Go	and	Swift

Masterpieces	in	Rust
• Redox:	A	Rust	Operating	System	https://www.redox-os.org
• The	Servo	Browser	Engine	https://servo.org

Why Rust：Rust Programming Language

Why Rust：Excellent Performance

Why Rust：Strong Checkers

• Borrow、Ownership、Lifetime

fn main() {

 let a = String::from("book"); // a owns "book"

 let b = a; // transfer ownership

 println!("a = {}", a); // Error! a is not owner

}

• “One	writer,	or	multiple	reader”	guaranteed	by	Rust
• Keep	each	variable's	ownership、lifetime	in	mind

—Fight	against	borrow	checker

PART 3
Rust SGX SDK

• Private	keys
• User	privacy	(health	data/personal	data	etc.)
• Raw	Blu-ray	video	stream
• DRM	enforcement

Intel	SGX	is	designed	to	protect	secret	data

SGX Needs Memory Safety Guarantees

But,	only	C/C++ SDK	is	available.
Should	be	very	very	very	careful	when	writing	SGX	enclaves	in	C/C++
• Buffer	overflow	… Yes!
• Return-oriented-programming	… Yes!
• Use-after-free	… Yes!
• Data	racing	… Yes!

Memory	bugs	are	exploitable!

Intel	SGX	
Enclave

Unauthorized
Mem	Access

Malformed
Input

• Memory	corruption	vulnerability	is	exploitable
• Code	needs	to	be	audited

Code	in	Trusted	Execution	Engine	may	be	vulnerable

SGX Needs Memory Safety Guarantees

• Provide	best	security	guarantees
• Provide	latest	SGX	APIs	by	Intel

To	better	protect	secrets	in	SGX,	we	need	memory	safety

Our	Solution	:	Intel	SGX	+	Rust	Programming	Language

• Use	Intel	SGX	for	data	protection
• Develop	Intel	SGX	enclaves	in	Rust
• Develop	Intel	SGX	untrusted	components	in	Rust	*
• More details in https://github.com/baidu/rust-sgx-sdk

• Memory	safety	guarantees
• Good	functionality

Goals

Hybrid Memory-Safe Architecture: Rules-of-thumb

• Intel	SGX	library	is	written	in	C/C++

Challenges

Memory	safety	rule-of-thumb	for	hybrid	memory-safe	architecture	
designing
1. Unsafe	components	should	be	appropriately	isolated	and	modularized,	

and	the	size	should	be	small	(or	minimized).
2. Unsafe	components	should	not	weaken	the	safe,	especially,	public	APIs	

and	data	structures.
3. Unsafe	components	should	be	clearly	identified	and	easily	upgraded.

Overview without Rust SGX SDK

SGX
context
switch

Enclave
ECALL	GATE
ECALL	GATE
ECALL	GATE

OCALL	GATE
OCALL	GATE
OCALL	GATE

Untrusted

ocall(bar)

ecall(foo)

Rust SGX SDK：v0.1.0, v0.2.0

SGX
context
switch

Enclave
ECALL	GATE
ECALL	GATE
ECALL	GATE

OCALL	GATE
OCALL	GATE
OCALL	GATE

Untrusted

ocall(bar)

ecall(foo)

Rust SGX SDK：v0.9.0

SGX
context
switch

Enclave
ECALL	GATE
ECALL	GATE
ECALL	GATE

OCALL	GATE
OCALL	GATE
OCALL	GATE

Untrusted

ocall(bar)

ecall(foo)

Rust SGX SDK：An Overview

Rust SGX SDK：Hello the world

• Untrusted	part

• Enclave

Rust SGX SDK：v0.9.0

SGX
context
switch

Enclave
ECALL	GATE
ECALL	GATE
ECALL	GATE

OCALL	GATE
OCALL	GATE
OCALL	GATE

Untrusted

ocall(bar)

ecall(foo)

Rust SGX SDK：v0.9.0

SGX
context
switch

Enclave
ECALL	GATE
ECALL	GATE
ECALL	GATE

OCALL	GATE
OCALL	GATE
OCALL	GATE

Untrusted

ocall(bar)

ecall(foo)

Rust SGX SDK：v0.9.0

SGX
context
switch

Enclave
ECALL	GATE
ECALL	GATE
ECALL	GATE

OCALL	GATE
OCALL	GATE
OCALL	GATE

Untrusted

ocall(bar)

ecall(foo)

Rust SGX SDK：v0.9.0

SGX
context
switch

Enclave
ECALL	GATE
ECALL	GATE
ECALL	GATE

OCALL	GATE
OCALL	GATE
OCALL	GATE

Untrusted

ocall(bar)

ecall(foo)

Rust SGX SDK：v0.9.0

SGX
context
switch

Enclave
ECALL	GATE
ECALL	GATE
ECALL	GATE

OCALL	GATE
OCALL	GATE
OCALL	GATE

Untrusted

ocall(bar)

ecall(foo)

EDL	File

Rust SGX SDK：Partition

Question:	Which	part	of	a	program	should	be	inside	SGX	enclave?
• Decryption/Encryption	using	private	key
• Seal	data/Unseal	data
• Analysis	on	secret	data
• …

However,	most	SGX	developers	are	not	SGX	experts,	not	experienced	in	
partition	an	SGX	app.

Good and NG Examples
node-secureworker, wolfSSL SGX Samples

• In-enclave DukTape Javascript engine
• Remote Attestation on bootstrap
• Seal all outputs

Node-secureworker [GOOD]

• In-enclave SSL connection
• Pass in-enclave pointer as argument

WolfSSL SGX Sample [NG]

WOLFSSL* enc_wolfSSL_new([user_check]
 WOLFSSL_CTX* ctx);

Tamper the ctx pointer may:
1) misguide app
2) cause DOS

Rust SGX SDK：Partition by SDK

Our	Goals

• Partition	basic	libraries	correctly
• Provide	an	easy-to-use	interface
• Let	developers	feel	easy	in	programming	Intel	SGX	enclaves

Rust SGX SDK：Short summary

1. The Memory	safety	is	necessary	to	Intel	SGX	enclaves.

2. Rust	SGX	SDK	is	valuable	and	promising	
• Allows	to	programming	Intel	SGX	Enclaves	in	Rust.
• Intends	to	build	up	a	hybrid	memory-safe	architecture	with	Rust	and	

Intel	SGX	libraries.
• Provides	a	series	of	crates	(libraries),	such	as	Rust-style	std,	alloc etc,	

and	Intel-SGX-style	crypto,	seal,	protected_fs etc.
• Partitions	the	basic	libraries	correctly.

Challenges
What we do?

Intel SGX : Limitations

Dynamic	loading?	NO!																									Static	linking!

System	call?	NO!																																				We	need	partition!

Threading	model?	Different!															Redefine	thread/sync!

Exception/Signal?	New!																								Reimplement exception/signal!

CPUID	instruction?	NO	in	SGXv1
RDTSC	instruction?	NO	in	SGXv1

Rust SGX SDK : Dependency

Rust	binaries	depends	on	libc by	default	(linux-x86_64,	dynamic	loading)

Intel	provides	static	trusted	libc (tlibc.a)	for	Intel	SGX	enclave
• SGX	features	are	provided	in	other	static	libraries

Rust	SGX	SDK	statically	link	to	Intel	SGX	libraries

Rust SGX SDK : Partition and Interacting with OS

SGX
context
switch

Enclave
ECALL	GATE
ECALL	GATE
ECALL	GATE

OCALL	GATE
OCALL	GATE
OCALL	GATE

Untrusted

ocall(bar)

ecall(foo)

Rust SGX SDK : Partition and Interacting with OS

SGX
context
switch

Enclave
ECALL	GATE
ECALL	GATE
ECALL	GATE

OCALL	GATE
OCALL	GATE
OCALL	GATE

Untrusted

ocall(bar)

ecall(foo)

OCALL
Feature	function

Rust SGX SDK : Partition and Interacting with OS

SGX
context
switch

Enclave
ECALL	GATE
ECALL	GATE
ECALL	GATE

OCALL	GATE
OCALL	GATE
OCALL	GATE

Untrusted

ocall(bar)

ecall(foo)

OCALL
Feature	function

Feature	function	
definition	in	EDL

Rust SGX SDK : Partition and Interaction with OS

SGX
context
switch

Enclave
ECALL	GATE
ECALL	GATE
ECALL	GATE

OCALL	GATE
OCALL	GATE
OCALL	GATE

Untrusted

ocall(bar)

ecall(foo)

OCALL
Feature	function

Feature	function	
definition	in	EDL Rust	style	API

Rust SGX SDK : Partition and Interaction with OS
In	enclave	source
• println!(”Hello QConf!”);

In	sgx_tstd,	macro	are	expanded	and	invoke	io API:
• println! => print! => sgx_tstd::io::_print()

sgx_tstd::io maintains	a	global	Stdout object	and	makes	it	a	LineWriter
• fn stdout_init() ->
Arc<SgxReentrantMutex<RefCell<LineWriter<Maybe<StdoutRaw>>>>>

StdoutRaw is	a	wrapper	structure	of	sgx_tstd::sys::Stdout
impl Stdout {

pub fn write(&self, data: &[u8]) -> io::Result<usize> {
…
u_stdout_ocall(&mut result as * mut isize as * mut usize,
data.as_ptr() as * const c_void,
cmp::min(data.len(), max_len()))};

Rust SGX SDK : Partition and Interaction with OS
In	enclave	source
• println!(”Hello QConf!”);

In	sgx_tstd,	macro	are	expanded	and	invoke	io API:
• println! => print! => sgx_tstd::io::_print()

sgx_tstd::io maintains	a	global	Stdout object	and	makes	it	a	LineWriter
• fn stdout_init() ->
Arc<SgxReentrantMutex<RefCell<LineWriter<Maybe<StdoutRaw>>>>>

StdoutRaw is	a	wrapper	structure	of	sgx_tstd::sys::Stdout
impl Stdout {

pub fn write(&self, data: &[u8]) -> io::Result<usize> {
…
u_stdout_ocall(&mut result as * mut isize as * mut usize,
data.as_ptr() as * const c_void,
cmp::min(data.len(), max_len()))};

Defined	in	
EDL	file

Rust SGX SDK : Partition and Interaction with OS

Feature	function	definition	in	EDL	file
stdio.edl
enclave {

untrusted {
size_t u_stdin_ocall([out, size=nbytes] void *buf, size_t nbytes);
size_t u_stdout_ocall([in, size=nbytes] const void *buf, size_t nbytes);
size_t u_stderr_ocall([in, size=nbytes] const void *buf, size_t nbytes);

};
};

Untrusted	Run-time	library	sgx_urts implements	the	feature	functions

#[no_mangle]
pub extern "C"
fn u_stdout_ocall(buf: * const libc::c_void, nbytes: libc::size_t) -> libc::size_t
{

unsafe { libc::write(libc::STDOUT_FILENO, buf, nbytes) as libc::size_t}
}

Rust SGX SDK : Partition and Interaction with OS

SGX
context
switch

Enclave
ECALL	GATE
ECALL	GATE
ECALL	GATE

OCALL	GATE
OCALL	GATE
OCALL	GATE

Untrusted

ocall(bar)

ecall(foo)

u_stdout_ocall u_stdout_o
call

println!

Rust SGX SDK : Threading by Sample

Linux	ThreadLinux	ThreadLinux	Thread

SGX	Enclave

SGX	Thread

SGX	worker	function

SGX	Thread

SGX	worker	function

SGX	Thread

SGX	worker	function

SGX	Global	Data	Structures

User	Space

Kernel	Spacetask_struct task_struct task_struct ksgxswpd	task

SGX
Core

SGX
Core

SGX
Core Core CPU

“Re-entry”	using	TCS	pool

TCSPolicy
• BOUND vs	UNBOUND

TCSNUM
• Max	SGX	TCS	number

Rust SGX SDK：Major Differences

Rust Intel	SGX	in	C Rust	SGX

Mutex
Mutex::new(0);

sgx_thread_mutex_t
struct	{
sgx_thread_mutex_t	mutex;
uint32_t	n;	};

SgxMutex
SgxMutex::new(0);

Thread
Posix	Thread

"Re-entry"
Bound:	stick	to	pthread
Unbound:	random	pick

"Re-entry"
Bound:	stick	to	pthread
Unbound:	random	pick

Thread-Local	Storage
ThreadLocal::new();
ctor/dtor	supported

get_thread_data()
BOUND:	no	ctor/dtor

UNBOUND:	no	ctor/dtor

thread_local!
BOUND:	ctor/dtor

UNBOUND:	no	ctor/dtor

Rust SGX SDK：Exceptions and Signals

Exception	Handling
• Implement panic-unwindmechanism

• Unwind	safely	in	Rust	style
• Implement	stack	backtrace mechanism

• (optional)	Dump	call	stack	on	panicking	
Signals
• Intel	SGX:	AEX	mechanism,	exception	handler	registration
• Rust	SGX	SDK

• Re-export	handler_register and	handler_unregister function
• Provide	handlers	to	some	sigs

• CPUID/RDTSC	etc

How to use?
It's easy!

• Most	of	std's	features	are	supported.
• Partially	support	of	std::fs,	std::os,	std::path,	std::sync,	std::thread
• No	support	of	std::env,	std::net,	std::process,	std::time

std	=>	sgx_tstd

Rust SGX SDK：Features

Intel	SGX	related	libraries
• sgx_tcrypto,	sgx_tdh,	sgx_tkey_exchange,	sgx_tprotected_fs,	sgx_trts,	sgx_tse,	sgx_tseal,	

sgx_tservice

Rust	style	libraries
• sgx_alloc,	sgx_rand,	sgx_serialize,	sgx_tunittest,	sgx_types

Supportive	libraries	in	untrusted	world
• sgx_ubacktrace,	sgx_urts,	sgx_ustdio

Rust SGX SDK：Porting Rust Crates to Intel SGX

1.Add	dependency	in	Cargo.toml
sgx_tstd = { path = "path/to/sgx_tstd" }

2	.Change	to	a	no_std	environment	in	lib.rs
#[no_std]

3.Include	sgx_tstd in	namespace	of	std
extern crate sgx_tstd as std;

4.Fix	all	incompatible	usage
Mutex => SgxMutex

5.Use	sgx_tstd as	usual
use std::vec::Vec;

Replace	dependency	of	Rust's	std	to	sgx_tstd

Rust SGX SDK：An Easy-to-use SDK

• Shipped	with	a	docker	image

—docker pull baiduxlab/sgx-rust

• Complete	Rust-style	documents

— https://dingelish.github.io/

• Rich	code	samples
—hello-rust, file, backtrace, hugemem(31.75GB), local attestation, remote attestation,
data sealing, serialization, threading, unit testing, 3rd party code samples

• Support	latest	Intel	SGX	SDK	(v1.9)
• Support	latest	Rust	nightly	build
• A	better	choice	than	sgx-utils	(libenclave)

Rust SGX SDK：Now and Future

• Recommended	by	Intel,	adopted	by	chain.com

French	Alternative	Energies	and	Atomic	
Energy	Commission	(CEA)	wins	iDash’17
competition	using	Rust	SGX	SDK

Rust SGX SDK：Now and Future

• Future

• New	target	:	x86_64-unknown-linux_sgx
• Support	rust	style	#[test]
• std::net
• std::time
• Porting	Rust's	ring	to	SGX
• Porting	Rust's	rustls	to	SGX

• Getting	Hot!

