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Who we are

Jamie Butler

• 20+ years in computer 

security

• Windows internals/kernel guy

• Primary focused on endpoint 

security

• Black Hat Review Board

• Co-author of Rootkits: 

Subverting the Windows 

Kernel

• CTO of Endgame



Who we are

Cody Pierce

• 15 years in computer 

security

• Led vulnerability research 

teams

• Technical Director of 

Research and Strategy at 

Endgame

• Frequent speaker at Black 

Hat



The exploit problem

• Vulnerabilities covering 2007 - 2017

• NVD CVE data set

• CVSS Score Medium+

• Counted vendors have a minimum of 5 

CVE per year

• Category grouping using CWE (Common 

Weakness Enumeration)

• 27,922 Qualifying CVE Entries



The exploit problem
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Why it matters

• WannaCry

• Infected over 300,000 

computers

• Affected over 150 countries

• NotPetya

• Targeted MeDoc

• Maersk

• Over $300M 

• Halt operations at 76 ports



Modern Software Vulnerabilities



Exploit targets

• Server side vulnerabilities - require no user 

interaction but are heavily protected and 

monitored

• Web frameworks

• Web servers

• Web app vulnerabilities

• Client side vulnerabilities - require limited 

user interaction but can bypass perimeter 

protections

• Email clients

• Web browsers

• Document readers



Intro to commonly 

exploited bug 

classes

• A “bug class” is a taxonomy of vulnerability 

types, and how they manifest in code

• We use these to classify data sets, analyze 

trends, and develop protections

• New bug classes are discovered regularly, 

especially when new technologies emerge or 

gain popularity

• Successful exploitation of these bug classes 

leads to control over the target program and 

by proxy the host system



Use-after-free

• Program allocates Object A

• Program frees Object A

• Program still has a reference to Object A 

and accesses it despite being freed



Use-after-free code 

example

#include <new>

class ObjectA {
void foo();

};

void uaf() {
A *a = new ObjectA;
// ...
delete a;
// ...
a->foo();

}



Heap overflow

• Function A allocates Buffer A of 16 bytes

• Function A copies user data into Buffer A 

without checking its size

• Memory following Buffer A is overwritten with 

user data 



Heap overflow code 

example

#define MAX_USER_DATA 16

void heapOverflow(char* userData, 
size_t userDataSize)
{

char* newUserData;

newUserData = 
(char*)malloc(MAX_USER_DATA);

memcpy(newUserData, userData, 
userDataSize); 
}



Out-of-bounds array 

access

• Function A allocates a statically sized table 

consisting of a max size

• User can specify arbitrary list of elements 

and the offset into table without checking 

bounds

• Statically sized table can be accessed out-

of-bounds by supplying a large offset into 

the table

• table[index] = value

• If index > 16 the value is written to memory 

outside of the original allocation limits 



Out-of-bounds array 

access code 

example

#define MAX_TABLE_SIZE 16

int fakeTable[MAX_TABLE_SIZE];

void oobArray(int index, int value)
{

fakeTable[index] = value;
}



Type confusion

• Object A contains 1 property

• Object B contains 1 function pointer foo

• Program allocates Object A and stores user 

supplied data in property 1

• Program casts Object A to Object B and 

executes Object B foo

• Due to type confusion B->foo points to A-

>data and executes user data as a function 

pointer 



Type confusion 

code example

class ClassA {
int userData;

};

class ClassB : ClassA {
void foo();

}

Void typeConfusion(int exploitAddress)
{

ClassA *ObjectA = new ClassA();
ClassB *ObjectB;
// ...
ObjectA->userData = exploitAddress;
// ...
ObjectB = 

static_cast<ClassA*>(ObjectA);
ObjectB->foo();

}



CWE distribution

2007 - 2017
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Operating system 

mitigations

• OS vendors and processor manufacturers 

add new and novel protections for 

preventing exploitation of these 

vulnerabilities

• The goal is to increase the difficulty while 

maintaining software compatibility and 

performance

• ASLR, DEP, Sealed Classes, Memory 

Randomization, Stack Canaries to name a 

few



Control flow 

integrity (CFI)

• CFI is one of the newer protections included 

in some compilers, most notably Microsoft 

Windows 10 under the name “Control Flow 

Guard”

• CFI is based on a policy allowing proper 

program execution, preventing exploits from 

hijacking program execution

• In all implementations thus far, recompilation 

is required to utilize these protections



CFI policy in 

practice

Control 
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CFI policy in 

practice

With CFI
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Exploit

takeaways

• Nearly half of severe vulnerabilities fall into 

one of these bug classes

• Attackers will exploit these types of 

vulnerabilities to hijack control flow and 

compromise the target system

• Vendors consistently add new ways to 

prevent successful exploitation of software 

vulnerabilities

• Control flow integrity is a leading way of 

preventing exploitation of common software, 

but requires recompilation and redistribution 

of applications



Hardware-assisted Exploit Prevention



Prior research into 

hardware-assisted 

exploit prevention

“kBouncer: Efficient and Transparent ROP 

Mitigation”, Pappas, 2012

“Security Breaches as PMU Deviation: 

Detecting and Identifying Security Attacks 

Using Performance Counters”, Yuan et al., 

2011

“CFIMon: Detecting Violation of Control Flow 

Integrity using Performance Counters”, Xia et 

al., 2012

“Transparent ROP Detection using CPU 

Performance Counters”, Li & Crouse, 2014



Functional 

requirements

• Implementation must work on Intel and 

AMD

• Implementation must work on 32 and 

64bit Operating Systems

• CFI policies must be applied without 

software recompilation or access to 

source code

• No offline preprocessing of the 

program in any way

• Performance overhead of the solution 

should be minimal



Resilience 

requirements

• Additional code will not be added to 

the running program in the form of 

“hooks” or validation logic

• It must work in the Kernel

• The system must be able to detect and 

prevent an exploit in real-time



Leveraging Hardware Capabilities



Performance 

monitoring unit 

(PMU)

• The PMU is dedicate silicon in a processor 

architecture that provides platform 

developers with hardware level counters for 

deep introspection into code execution

• Dozens of PMU facilities are available include 

CPU cycles, Memory performance, UI, and 

Context switching

• Many performance tools in popular IDEs 

utilize these capabilities to analyze a running 

program

• The PMU can interrupt the processor to 

inspect and retrieve data



Branch prediction 

unit (BPU)

• To optimize processor cycles a BPU is used 

to pre-stage instructions in the instruction 

pipeline

• This pipeline is responsible for the ordering 

of execution on a running processor

• By leveraging the BPU to predict the next 

instructions a program significant 

performance improvements can be gained 

especially in multi-core architectures

• Unfortunately this piece of the silicon is fairly 

undocumented and often considered 

intellectual property



Indirect call 

mispredictions

• One feature of the PMU is to interrupt the 

system when programmable BPU events 

occur

• One such event available is to interrupt on 

indirect branch mispredictions

• Indirect branches occur most often when 

virtual functions are being executed

• As previously described in the bug-class 

overview, attackers are likely to hijack code 

execution, often through an indirect call



Interrupt vector 

table

• To manage the interrupts and interrupt 

handlers in a process a map of 255 locations 

is kept

• This map is tied to the interrupt vector value, 

defined by the processor manufacturer, and 

contains the function to call when that 

interrupt is serviced

• To effectively implement hardware based CFI 

we have to set up the IVT for PMI to be 

handled by our driver



Hardware 

takeaways

• Modern architectures include performance 

monitoring facilities that enable low-level 

interrupt of the processor

• The branch prediction unit is responsible for 

optimizing instruction pipelines and can be 

used by the PMU to interrupt on 

mispredictions

• Indirect calls are a popular target of exploits 

and will generate a misprediction event 

before control flow is hijacked



Building a CFI Policy



Dynamic program 

analysis

• Each executable image that loads into a 

process is an opportunity for an attacker to 

exploit

• Comprehensive program analysis is required 

to define every possible legitimate function 

so that a CFI policy can enforce it

• We can do this at runtime using kernel 

capabilities



Kernel image load 

callbacks

• Every Kernel has a mechanism for alerting 

drivers to new executable images loading 

into memory

• This callback is given the opportunity to 

process the image

• To build a valid set of control flow targets we 

need to identify every possible function in an 

image



Linear sweep 

disassembly

• Linear sweep disassembly is the process of 

sequentially processing each byte in a file 

and disassembling them to platform 

instructions

• This is the most efficient way but has 

drawbacks vs other approaches

• Different compilers emit various assembly 

instructions we can build into function 

heuristics

• We have discovered several of these 

heuristics that allow us to build a set of 

legitimate functions in any executable 

image



Function 

identification

• Prologues and Epilogs

• Function Padding

• Data references

• Exception handling references

• Direct branch exploration



Table lookup 

considerations

• Tens of thousands of indirect branch 

mispredictions happen every minute

• Our CFI policy look up must be very fast 

and we take into consideration search is 

more important than insertion

• We decided on AVL trees which provide 

O(log n) search to maximize performance

• Any additional processing is sent down a 

“slow-path” which operates outside of the 

ISR



CFI takeaways

• A violation of CFI occurs when a destination 

address is not found in our table of 

discovered functions

• Every image loaded into a protected process 

is dynamically processed to build the CFI 

table

• When an indirect branch is mispredicted our 

kernel driver can compare the destination 

against our list

• Since the system is interrupted we have a 

great opportunity to prevent the attack from 

taking place if the destination is not allowed



Efficacy 

CODE 

EXECUTION 

TECHNIQUE

SAMPLES

HA-CFI 

DETECT

RATE

EMET

DETECT

RATE

ROP 37 95% 100%

ROPless
Technique A

1 100% 0%

ROPless
Technique B

10 100% 0%



Efficacy

BUG CLASS
# 

CVE’S

# 

SAMPL

ES

HA-CFI 

DETECTIO

N RATE

Out-of-bounds 

Write
3 6 83.3%

Buffer Overflow 3 6 83.3%

Integer Overflow 2 6 100%

Use-After-Free 4 14 100%

Double Free 2 4 100%

Type Confusion 3 6 100%

Race Condition 1 4 100%

Uninitialized 

Memory
1 1 100%



Conclusion

• Exploit techniques change rapidly

• Attackers use creativity to bypass 

“post-exploit” protections

• Exploit defense needs to detect and 

prevent exploitation at the earliest 

phase

• Compile-time solutions are powerful 

but not sufficient

• Hardware can be utilized to enforce 

CFI policies at runtime

• Real prevention requires defense-in-

depth



Questions?

Jamie: @jamierbutler

Cody:  @CodyPierce


