
Zero Exploit Tolerance

By Jamie Butler and Cody Pierce

Confidential and Proprietary

Agenda

• Who we are

• The exploit problem

• Modern software vulnerabilities

• Hardware-assisted exploit

prevention

• Prior research

• Leveraging hardware capabilities

• Building a CFI policy

• Efficacy

• Conclusion

• Questions

Who we are

Jamie Butler

• 20+ years in computer

security

• Windows internals/kernel guy

• Primary focused on endpoint

security

• Black Hat Review Board

• Co-author of Rootkits:

Subverting the Windows

Kernel

• CTO of Endgame

Who we are

Cody Pierce

• 15 years in computer

security

• Led vulnerability research

teams

• Technical Director of

Research and Strategy at

Endgame

• Frequent speaker at Black

Hat

The exploit problem

• Vulnerabilities covering 2007 - 2017

• NVD CVE data set

• CVSS Score Medium+

• Counted vendors have a minimum of 5

CVE per year

• Category grouping using CWE (Common

Weakness Enumeration)

• 27,922 Qualifying CVE Entries

The exploit problem

CVE Entries 2007 -

2017

0

1000

2000

3000

4000

5000

6000

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Total CVEs Over Time

CVE Entries

Why it matters

• WannaCry

• Infected over 300,000

computers

• Affected over 150 countries

• NotPetya

• Targeted MeDoc

• Maersk

• Over $300M

• Halt operations at 76 ports

Modern Software Vulnerabilities

Exploit targets

• Server side vulnerabilities - require no user

interaction but are heavily protected and

monitored

• Web frameworks

• Web servers

• Web app vulnerabilities

• Client side vulnerabilities - require limited

user interaction but can bypass perimeter

protections

• Email clients

• Web browsers

• Document readers

Intro to commonly

exploited bug

classes

• A “bug class” is a taxonomy of vulnerability

types, and how they manifest in code

• We use these to classify data sets, analyze

trends, and develop protections

• New bug classes are discovered regularly,

especially when new technologies emerge or

gain popularity

• Successful exploitation of these bug classes

leads to control over the target program and

by proxy the host system

Use-after-free

• Program allocates Object A

• Program frees Object A

• Program still has a reference to Object A

and accesses it despite being freed

Use-after-free code

example

#include <new>

class ObjectA {
void foo();

};

void uaf() {
A *a = new ObjectA;
// ...
delete a;
// ...
a->foo();

}

Heap overflow

• Function A allocates Buffer A of 16 bytes

• Function A copies user data into Buffer A

without checking its size

• Memory following Buffer A is overwritten with

user data

Heap overflow code

example

#define MAX_USER_DATA 16

void heapOverflow(char* userData,
size_t userDataSize)
{

char* newUserData;

newUserData =
(char*)malloc(MAX_USER_DATA);

memcpy(newUserData, userData,
userDataSize);
}

Out-of-bounds array

access

• Function A allocates a statically sized table

consisting of a max size

• User can specify arbitrary list of elements

and the offset into table without checking

bounds

• Statically sized table can be accessed out-

of-bounds by supplying a large offset into

the table

• table[index] = value

• If index > 16 the value is written to memory

outside of the original allocation limits

Out-of-bounds array

access code

example

#define MAX_TABLE_SIZE 16

int fakeTable[MAX_TABLE_SIZE];

void oobArray(int index, int value)
{

fakeTable[index] = value;
}

Type confusion

• Object A contains 1 property

• Object B contains 1 function pointer foo

• Program allocates Object A and stores user

supplied data in property 1

• Program casts Object A to Object B and

executes Object B foo

• Due to type confusion B->foo points to A-

>data and executes user data as a function

pointer

Type confusion

code example

class ClassA {
int userData;

};

class ClassB : ClassA {
void foo();

}

Void typeConfusion(int exploitAddress)
{

ClassA *ObjectA = new ClassA();
ClassB *ObjectB;
// ...
ObjectA->userData = exploitAddress;
// ...
ObjectB =

static_cast<ClassA*>(ObjectA);
ObjectB->foo();

}

CWE distribution

2007 - 2017
Buffer Mismanagement

26%

Privilege
Escalation/Sandbox Escape

14%

Input Validation
12%

Cross Site Scripting
10%

Resource Management/Use
After Free

9%

Information Exposure
9%

Improper Access
Control

5%

SQL Injection
5%

Numeric
Errors

4%

Code
Injection

3%

Cross-Site Request Forgery
(CSRF)

3%

Operating system

mitigations

• OS vendors and processor manufacturers

add new and novel protections for

preventing exploitation of these

vulnerabilities

• The goal is to increase the difficulty while

maintaining software compatibility and

performance

• ASLR, DEP, Sealed Classes, Memory

Randomization, Stack Canaries to name a

few

Control flow

integrity (CFI)

• CFI is one of the newer protections included

in some compilers, most notably Microsoft

Windows 10 under the name “Control Flow

Guard”

• CFI is based on a policy allowing proper

program execution, preventing exploits from

hijacking program execution

• In all implementations thus far, recompilation

is required to utilize these protections

CFI policy in

practice

Control

Transfer

Destination DestinationDestination

Without CFI

CFI policy in

practice

With CFI

Control Transfer

Destination Terminate

CFI Policy Enforcement

Exploit

takeaways

• Nearly half of severe vulnerabilities fall into

one of these bug classes

• Attackers will exploit these types of

vulnerabilities to hijack control flow and

compromise the target system

• Vendors consistently add new ways to

prevent successful exploitation of software

vulnerabilities

• Control flow integrity is a leading way of

preventing exploitation of common software,

but requires recompilation and redistribution

of applications

Hardware-assisted Exploit Prevention

Prior research into

hardware-assisted

exploit prevention

“kBouncer: Efficient and Transparent ROP

Mitigation”, Pappas, 2012

“Security Breaches as PMU Deviation:

Detecting and Identifying Security Attacks

Using Performance Counters”, Yuan et al.,

2011

“CFIMon: Detecting Violation of Control Flow

Integrity using Performance Counters”, Xia et

al., 2012

“Transparent ROP Detection using CPU

Performance Counters”, Li & Crouse, 2014

Functional

requirements

• Implementation must work on Intel and

AMD

• Implementation must work on 32 and

64bit Operating Systems

• CFI policies must be applied without

software recompilation or access to

source code

• No offline preprocessing of the

program in any way

• Performance overhead of the solution

should be minimal

Resilience

requirements

• Additional code will not be added to

the running program in the form of

“hooks” or validation logic

• It must work in the Kernel

• The system must be able to detect and

prevent an exploit in real-time

Leveraging Hardware Capabilities

Performance

monitoring unit

(PMU)

• The PMU is dedicate silicon in a processor

architecture that provides platform

developers with hardware level counters for

deep introspection into code execution

• Dozens of PMU facilities are available include

CPU cycles, Memory performance, UI, and

Context switching

• Many performance tools in popular IDEs

utilize these capabilities to analyze a running

program

• The PMU can interrupt the processor to

inspect and retrieve data

Branch prediction

unit (BPU)

• To optimize processor cycles a BPU is used

to pre-stage instructions in the instruction

pipeline

• This pipeline is responsible for the ordering

of execution on a running processor

• By leveraging the BPU to predict the next

instructions a program significant

performance improvements can be gained

especially in multi-core architectures

• Unfortunately this piece of the silicon is fairly

undocumented and often considered

intellectual property

Indirect call

mispredictions

• One feature of the PMU is to interrupt the

system when programmable BPU events

occur

• One such event available is to interrupt on

indirect branch mispredictions

• Indirect branches occur most often when

virtual functions are being executed

• As previously described in the bug-class

overview, attackers are likely to hijack code

execution, often through an indirect call

Interrupt vector

table

• To manage the interrupts and interrupt

handlers in a process a map of 255 locations

is kept

• This map is tied to the interrupt vector value,

defined by the processor manufacturer, and

contains the function to call when that

interrupt is serviced

• To effectively implement hardware based CFI

we have to set up the IVT for PMI to be

handled by our driver

Hardware

takeaways

• Modern architectures include performance

monitoring facilities that enable low-level

interrupt of the processor

• The branch prediction unit is responsible for

optimizing instruction pipelines and can be

used by the PMU to interrupt on

mispredictions

• Indirect calls are a popular target of exploits

and will generate a misprediction event

before control flow is hijacked

Building a CFI Policy

Dynamic program

analysis

• Each executable image that loads into a

process is an opportunity for an attacker to

exploit

• Comprehensive program analysis is required

to define every possible legitimate function

so that a CFI policy can enforce it

• We can do this at runtime using kernel

capabilities

Kernel image load

callbacks

• Every Kernel has a mechanism for alerting

drivers to new executable images loading

into memory

• This callback is given the opportunity to

process the image

• To build a valid set of control flow targets we

need to identify every possible function in an

image

Linear sweep

disassembly

• Linear sweep disassembly is the process of

sequentially processing each byte in a file

and disassembling them to platform

instructions

• This is the most efficient way but has

drawbacks vs other approaches

• Different compilers emit various assembly

instructions we can build into function

heuristics

• We have discovered several of these

heuristics that allow us to build a set of

legitimate functions in any executable

image

Function

identification

• Prologues and Epilogs

• Function Padding

• Data references

• Exception handling references

• Direct branch exploration

Table lookup

considerations

• Tens of thousands of indirect branch

mispredictions happen every minute

• Our CFI policy look up must be very fast

and we take into consideration search is

more important than insertion

• We decided on AVL trees which provide

O(log n) search to maximize performance

• Any additional processing is sent down a

“slow-path” which operates outside of the

ISR

CFI takeaways

• A violation of CFI occurs when a destination

address is not found in our table of

discovered functions

• Every image loaded into a protected process

is dynamically processed to build the CFI

table

• When an indirect branch is mispredicted our

kernel driver can compare the destination

against our list

• Since the system is interrupted we have a

great opportunity to prevent the attack from

taking place if the destination is not allowed

Efficacy

CODE

EXECUTION

TECHNIQUE

SAMPLES

HA-CFI

DETECT

RATE

EMET

DETECT

RATE

ROP 37 95% 100%

ROPless
Technique A

1 100% 0%

ROPless
Technique B

10 100% 0%

Efficacy

BUG CLASS

CVE’S

SAMPL

ES

HA-CFI

DETECTIO

N RATE

Out-of-bounds

Write
3 6 83.3%

Buffer Overflow 3 6 83.3%

Integer Overflow 2 6 100%

Use-After-Free 4 14 100%

Double Free 2 4 100%

Type Confusion 3 6 100%

Race Condition 1 4 100%

Uninitialized

Memory
1 1 100%

Conclusion

• Exploit techniques change rapidly

• Attackers use creativity to bypass

“post-exploit” protections

• Exploit defense needs to detect and

prevent exploitation at the earliest

phase

• Compile-time solutions are powerful

but not sufficient

• Hardware can be utilized to enforce

CFI policies at runtime

• Real prevention requires defense-in-

depth

Questions?

Jamie: @jamierbutler

Cody: @CodyPierce

