
Home of Redis

Redis for Fast Data Ingest

2

Agenda

• Fast Data Ingest and its challenges

• Redis for Fast Data Ingest
• Pub/Sub
• List
• Sorted Sets as a Time Series

Database

• The Demo

• Scaling with Redise Flash

Fast Data Ingest Scenarios

4

IOT

5

Network Traffic Inspection

6

Social Media Analysis

7

More Scenarios

And more…

Log Collection

User Activity Tracking

Multi-player Gaming

Fintech

8

Fast Data Ingest Challenges

• Keeping up with the pace of data arrival

• Data from multiple sources with no standard data format

• Filter, analyze, and transform data in real-time

• Managing data arriving from sources distributed geographically

9

Requirements for Fast Data Ingest

• Physical infrastructure – network, computational resources, etc.

• Software stack to:

• Filter
• Aggregate
• Transform
• Distribute

data in real-time with sub-millisecond latency

Fast Data Ingest with Redis

11

About Redis

Open source. The leading in-memory database
platform, supporting any high performance
operational, analytics or hybrid use case.

The open source home and commercial provider
of Redis Enterprise (Redise) technology, platform,
products & services.

12

Redis for Fast Data Ingest

13

Redis for Fast Data Ingest

ListsSorted Sets

Hashes Hyperloglog

Geospatial Indexes

Bitmaps

SetsStrings

Bit field

Redis Data Structures

Publisher Channel

Subscriber 1

Subscriber 2

Subscriber 3

Subscriber n

Redis Pub/Sub

Common Ingest Techniques in Redis

15

Pub/Sub

Commands
Publisher: publish <channel name> <message>

Subscriber: subscribe <channel name>

Publisher Channel

Subscriber 1

Subscriber 2

Subscriber 3

Subscriber n

16

List

Publisher

Subscriber 1

Subscriber 2

Subscriber 3

Subscriber n

Commands
Publisher: lpush <list name> <message>

Subscriber: brpop <list name> <timeout>

17

Sorted Set

Commands
Publisher: zadd <timeseries name> <timestamp> <message>

Subscriber: zrangebyscore <timeseries name> <last timestamp> <current timestamp> WITHSCORES

Publisher

Subscriber 1

Subscriber 2

Subscriber 3

Subscriber n

The Demo

19

Demo: Problem Description

English Tweets Filter

Influencer Tweets Filter

Popular hashtags among English
tweets

Influencer Catalog

All Tweets

Sample Tweet Message in the JSON format:
{

"created_at":"Tue Jul 11 17:06:03 +0000 2017",
"id":884821096440004600,
"text":"USGS reports a M2 #earthquake 31km WSW of Enterprise, Utah on 7/11/17 @ 17:01:53 UTC https://t.co/xXQH2Mfy93 #quake",
"user":{

"id":1414684496,
"name":"Every Earthquake",
"screen_name":"everyEarthquake",
"location":"Earth",
"followers_count":18978,
"friends_count":17,
"lang":"en"

}
}

"lang":"en"

followers_count > 10000

Match pattern “#(\\w+)”
Increment count for that pattern

Map influencer id to profile
Sorted Set: follower count -> id

file://w

20

Demo Setup

Service Provider for Messages

Programming Language for the demo

IDE

Redis container on Docker

21

The Three Data Ingest Techniques

Fast Data Ingest Technique Pros Cons

Pub/Sub • Easy
• Decoupled setup
• Good for geographically

distributed setup

• Not resilient to connection
loss

• Requires many connections

Lists • Easy
• Resilient to connection loss

• Tightly coupled producers and
consumers

• Data duplication

Sorted Sets • Resilient to connection loss
• Least chance of losing data
• Access to historical data
• Loosely coupled producers and

consumers

• Consumes space
• Complex logic

Technique 1: Fast Data Ingest with Pub/Sub

23

Fast Data Ingest with Pub/Sub

EnglishTweetsFilter

InfluencerTweetsFilter

HashTagCollector

InfluencerCollector

Ingest
PubSub

AllTweets

English
Tweets

Influencer
Tweets

• Easy
• Decoupled setup
• Good for geographically distributed setup

Advantages

24

Class Diagrams and Sample Code

https://github.com/redislabsdemo/IngestPubSub

https://github.com/roshanredislabs/IngestPubSub

Technique 2: Fast Data Ingest with Lists

26

Fast Data Ingest with Lists

EnglishTweetsFilter

InfluencerFilter

HashTagFilter

Ingest
Stream

AllTweets
Listener

EnglishTweets
Listener

alldata

englishtweets

• Easy
• Resilient to connection loss

Advantages

27

Class Diagrams and Sample Code

https://github.com/redislabsdemo/IngestList

https://github.com/roshanredislabs/IngestList

Technique 3: Fast Data Ingest with Sorted Sets

29

Fast Data Ingest with Sorted Sets

EnglishTweetsFilter

InfluencerFilter

HashTagFilter

Ingest
Stream

alltweets

englishtweets

• Resilient to connection loss
• Least chance of losing data
• Access to historical data
• Loosely coupled producers and consumers

Advantages

30

Class Diagrams and Sample Code

https://github.com/redislabsdemo/IngestSortedSet

https://github.com/redislabsdemo/IngestSortedSet

Redise for Fast Data Ingest

32

Redise Technology

Redis Database
Instances

33

Redise Technology

Cluster Manager

Enterprise Layer

Open Source
Layer

REST API

Zero latency proxy

34

Redise Technology

Enterprise Layer

Open Source
Layer

Zero latency proxy

Cluster Manager

REST API

Redise Node

35

Redise Technology

Redise Cluster
• Shared nothing cluster architecture

• Fully compatible with open source

commands & data structures

36

Redise - Shared Nothing Symmetric Architecture

Cluster
Management
Path

Proxies
Node Watchdog
Cluster Watchdog

Node 1 Node 2 Node N (odd number)…

Redis
Shards

Unique multi-tenant “Docker” like architecture enables running hundreds of databases over a single, average cloud instance without performance
degradation and with maximum security provisions

Data Path

Distributed Proxies
Single or Multiple Endpoints

37

Redise Benefits for Data Ingest

Effortless Scaling

Simple, Seamless
Clustering. Linear scaling

ACID Compliance in
Cluster Architecture

Substantially Lower
Costs

Run on Flash as a RAM
extension

Top notch 24x7 expert
support

Always On Availability

Instant Failure Recovery,
No Data loss

Stable and Predictable
High Performance

38

Redise Flash

• Near-RAM performance at 70%+ lower
costs

• Technology treats Flash as a RAM
replacement (or extension)

• RAM/Flash ratio can be easily configured

• Pluggable storage engine

• Available on SATA-based SSD, NVMe-based
SSD, NVDIMM like 3D XPoint/SCM on x86
and P8 platforms

2048 GB
RAM

204 GB
RAM

1844 GB
Flash

10% 90%

Keys & hot values Cold values

39

Redise Flash - 10TB Redis Deployment on EC2

Redis on RAM Redise Flash

Dataset size 10 TB 10 TB

Database size with replication 30 TB 20 TB

AWS instance type x1.32xlarge i3.16xlarge

Actual instance size
(RAM, and RAM+Flash)

1.46 TB 3.66 TB

of instances needed 21 6 + 1 (for quorum)

Persistent Storage (EBS) 154 TB 110 TB

1 year cost (reserved instances) $1,595,643 $298,896

Savings - 81.27%

*

* Redis Enterprise only needs 1 copy of the data because quorum issues are solved at the node level

40

Questions

?
?

?

?

?

?

?
?

?

?
?

41

One more thing….

redis.conf setting:

client-output-buffer-limit pubsub 32mb 8mb 60

With this setting, Redis will force the clients to disconnect under two situations:

• If the output buffer grows more than 32mb

• If the output buffer holds 8mb of data consistently for 60 seconds

42

Thank You

roshan@redislabs.com
@roshankumar

Roshan Kumar
expert@redislabs.com
@redislabs

Redis Labs

