
Rethinking Applications in
the NVM Era

Amitabha Roy
ex- Intel Research

NVM = Non Volatile Memory
● Like DRAM, but retains its contents across reboots
● Past: Non Volatile DIMMs

○ Memory DIMM + Ultra-capacitor + Flash
○ Contents dumped on power fail, restored on startup
○ DRAM style access and performance but non-volatile

● Future: New types of non volatile memory media
○ Memristor, Phase Change Memory, Crossbar resistive memory, 3DXPoint
○ 3DXPoint DIMMS (Intel and Micron), demoed at Sapphire NOW 2017
○ Non Volatile without extra machinery - practical

Software Design
● New level in the storage hierarchy

Disk/SSD DRAMNVM

Persistent Persistent Volatile

Block oriented Byte oriented Byte oriented

Slow Fast Fast

⇒ Fundamental breakthroughs in how we design systems

Use Case: Rocksdb
● Rocksdb - open source persistent key value store
● Optimized for Flash SSDs
● persistent map<key:string, value:string>
● Two levels (LSM tree) - sorted by key

L0: DRAM
PUT(<K, V>)

OK
Absorb updates quickly

L1: SSD

Flush large batches to SSD

Use Case: Rocksdb
● Problem: Lose all data in DRAM on power fail
● Durability guarantee requires a write ahead log
● Solution: synchronously append to a write ahead log

L0: DRAM
PUT(<K, V>)

Absorb updates quickly

L1: SSD

Flush large batches to SSD

Write Ahead Log: SSD

WAL.Append(<K, V>) OK

Rocksdb

 + WAL

Have to choose between safety and performance

Synchronous == 10X GAP

Rocksdb WAL Flow

PUT(<K, V>)

SSD

WAL.Append(<K, V>) OK 20 us round trip to SSD
Small KV pairs ~ 100 bytes
Synchronous writes => 5 MB/s

SSD is not the problem.
Sequential SSD BW => 1 GB/s

Problem: Persistence is block oriented
Most efficient path to SSD is 4KB units not 100 bytes
Have to pay fixed latency cost for only 100 byte IO

Rocksdb WAL Flow
Solution: Use byte oriented persistent memory

PUT(<K, V>)

SSD

WAL.Append(<K, V>) OK

NVM

Drain 4KB OK

~100 ns round trip to NVDIMM
Small KV pairs ~ 100 bytes
Synchronous writes => 1GB/s
Sequential SSD BW => 1 GB/s

Rocksdb
 + WAL

 + WAL + NVM

NVM removes the need for a safety vs performance choice
NVM = No more synchronous logging pain for KV stores, FS, Databases...

Software Engineering for NVM
● Building software for NVM has high payoffs

○ Make everything go much faster

● Not as simple as writing code for data in DRAM
○ Even though NVM looks exactly like DRAM for access

● Writing correct code to maintain persistent data structures is difficult
○ Part 2 of this talk

● Getting it wrong has high cost
○ Persistence = errors do not go away with reboot
○ No more ctrl+alt+del to fix problems

● Software engineering aids to deal with persistent memory
○ Part 3 of this talk

Example: Building an NVM log
● Like the one we need for RocksDB
● Start from DRAM version

int * entries;
int tail;

void append(int value) {
tail++;
entries[tail] = value;

}

Making it Persistent

…
entries = mmap(fd, ...);
...

int * entries;
int tail;

void append(int value) {
tail++;
entries[tail] = value;

}

DRAM
(pagecache) IO Device

page_out()

page_in()

OS VMM

Persistent devices are block oriented
Hide block interface behind mmap abstraction

entries

Persistent Data Structures Tomorrow
Does not work for NVM

Wasteful copying - NVM is byte oriented and directly addressable

NVM

page_out()

page_in()

OS VMMDRAM
(pagecache)

Direct Access (DAX)

NVM

Most Linux filesystems support for NVM
mount -t ramfs -o dax,size=128m ext2 /nvm

fd = open(“/nvm/log”, …);
int *entries = mmap(fd, ...);
int tail;

void append(int value) {
tail++;
entries[tail] = value;

}

entries

Tolerating Reboots

fd = open(“/nvm/log”, …);
int entries = mmap(fd, ...);
int tail;

void append(int value) {
tail++;
entries[tail] = value;

}

Persistent data structures live across reboots

Thinking about Persistence
void * area = mmap(.., fd, ..);

int *entries=0xabc

Virtual Physical

0xabc 0xdef

... ...

Page Table

0xdef

In NVM NVM

Thinking about Persistence

After reboot

Virtual Physical

0xbbb 0xdef

0xabc NULL

Page Table

0xdef

Persistent data structures live across reboots. Address mappings do not.

int *entries=0xabc

In NVM

CRASH

NVM

Persistent Pointers
Solution: Make pointers base relative. Base comes from mmap.

fd = open(“/nvm/log”, …);
nvm_base = mmap(fd, ...);
#define VA(off) ((off) + nvm_base)

offset_t entries;
int tail;

void append(int value) {
tail++;
VA(entries)[tail] = value;

}

entries

nvm_base:

Power Failure

fd = open(“/nvm/log”, …);
nvm_base = mmap(fd, ...);
#define VA(off) ((off) + nvm_base)

offset_t entries;
int tail;

void append(int value) {
tail++;
VA(entries)[tail] = value;

}

value

garbage

Entries

tail

value

garbage

Entries

tail

value

value

Entries

tail

Before

tail++

.. = value

Power Failure

fd = open(“/nvm/log”, …);
nvm_base = mmap(fd, ...);
#define VA(off) ((off) + nvm_base)

offset_t entries;
int tail;

void append(int value) {
tail++;
VA(entries)[tail] = value;

}

value

garbage

Entries

tail

value

garbage

Entries

tail

value

value

Entries

tail

Before

tail++

Reboot after Power Failure

fd = open(“/nvm/log”, …);
nvm_base = mmap(fd, ...);
#define VA(off) ((off) + nvm_base)

offset_t entries;
int tail;

void append(int value) {
tail++;
VA(entries)[tail] = value;

}

value

garbage

Entries

tailreboot

Ordering Matters

fd = open(“/nvm/log”, …);
nvm_base = mmap(fd, ...);
#define VA(off) ((off) + nvm_base)

offset_t entries;
int tail;

void append(int value) {
VA(entries)[tail + 1] = value;
tail++;

}

value

garbage

Entries

tail

value

garbage

Entries

tail

value

value

Entries
tail

Before

tail++

.. = value

OK to fail !

The last piece: CPU caches
Transparent processor caches reorder your updates to NVM

CPU
core

1
Cache

2
NVM

fd = open(“/nvm/log”, …);
nvm_base = mmap(fd, ...);
#define VA(off) ((off) + nvm_base)

offset_t entries;
int tail;

void append(int value) {
VA(entries)[tail + 1] = value;
tail++;

}

Cache:
{tail, entries[tail]}

NVM:
{}

Cache:
{entries[tail]}

NVM:
{tail}

Explicit Cache Control

fd = open(“/nvm/log”, …);
nvm_base = mmap(fd, ...);
#define VA(off) ((off) + nvm_base)

offset_t entries;
int tail;

void append(int value) {
tail++;
sfence();
clflush(&tail);
VA(entries)[tail] = value;
sfence();
clflush(&VA(entries)[tail]);

}

CPU
core

1
Cache

2
NVM

Use explicit instructions to control cache behavior

Cache:
{tail}

NVM:
{entries[tail]}

Getting NVM Right

COMPLEXITY !!!

fd = open(“/nvm/log”, …);
nvm_base = mmap(fd, ...);
#define VA(off) ((off) + nvm_base)

offset_t entries;
int tail;

void append(int value) {
tail++;
sfence();
clflush(&tail);
VA(entries)[tail] = value;
sfence();
clflush(&VA(entries)[tail]);

}

Software Toolchains for NVM
● Correctly manipulating NVM can be difficult.
● Bugs and errors propagate past the lifetime of the program

○ Fixing errors with DRAM is easy - ctrl + alt + del
○ Your data structures will outlive your code
○ New reality for software engineering

● People will still do it (this talk encourages you to)
● Need automation to relieve software burden

○ Testing
○ Libraries

Software Testing for NVM
fd = open(“/nvm/log”, …);
nvm_base = mmap(fd, ...);
#define VA(off) ((off) + nvm_base)

offset_t entries;
int tail;

void append(int value) {
tail++;
sfence();
clflush(&tail);
VA(entries)[tail] = value;
sfence();
clflush(&VA(entries)[tail]);

}

TEST {
 append(42);
 ASSERT(entries[1] == 42);
}

Software Testing for NVM
fd = open(“/nvm/log”, …);
nvm_base = mmap(fd, ...);
#define VA(off) ((off) + nvm_base)

offset_t entries;
int tail;

void append(int value) {
tail++;
sfence();
clflush(&tail); // BUG!!
VA(entries)[tail] = value;
sfence();
clflush(&VA(entries)[tail]);

}

TEST {
 append(42);
 ASSERT(entries[1] == 42);
}

Thousands of executions…..
ASSERT nevers fires ʸʸ

Software Testing for NVM
fd = open(“/nvm/log”, …);
nvm_base = mmap(fd, ...);
#define VA(off) ((off) + nvm_base)

offset_t entries;
int tail;

void append(int value) {
tail++;
sfence();
clflush(&tail); // BUG!!
VA(entries)[tail] = value;
sfence();
clflush(&VA(entries)[tail]);

}

TEST {
 append(42);
 REBOOT;
 ASSERT(entries[1] == 42);
}

Thousands of executions…..
ASSERT maybe fires ʸ

YAT

Automated testing tool for NVM software

Yat: A Validation Framework for Persistent Memory. Dulloor et al. USENIX 2014

Idea: Test power failure without really pulling the plug

1. Extract possible store orders to NVM

Use a hypervisor or instrumentation via binary instrumentation (eg. PIN, Valgrind)
Use understanding of x86 memory ordering model

fd = open(“/nvm/log”, …);
nvm_base = mmap(fd, ...);
#define VA(off) ((off) + nvm_base)

offset_t entries;
int tail;

void append(int value) {
tail++;
sfence();
clflush(&tail); // BUG!!
VA(entries)[tail] = value;
sfence();
clflush(&VA(entries)[tail]);

}

YAT {
 append(42);
 ASSERT(entries[1] == 42);
}

tail=1;
..=42;

..=42;
tail=1;

2. Consider All Possible Truncations

Each truncation is a simulated power failure!

fd = open(“/nvm/log”, …);
nvm_base = mmap(fd, ...);
#define VA(off) ((off) + nvm_base)

offset_t entries;
int tail;

void append(int value) {
tail++;
sfence();
clflush(&tail); // BUG!!
VA(entries)[tail] = value;
sfence();
clflush(&VA(entries)[tail]);

}

YAT {
 append(42);
 ASSERT(entries[1] == 42);
}

tail=1;
..=42;

..=42;
tail=1;

tail=1;
..=42;

tail=1; ..=42;
tail=1;

..=42;

2. Check Assertion for Each Truncation
fd = open(“/nvm/log”, …);
nvm_base = mmap(fd, ...);
#define VA(off) ((off) + nvm_base)

offset_t entries;
int tail;

void append(int value) {
tail++;
sfence();
clflush(&tail); // BUG!!
VA(entries)[tail] = value;
sfence();
clflush(&VA(entries)[tail]);

}

YAT {
 append(42);
 ASSERT(entries[1] == 42);
}

tail=1;
..=42;

..=42;
tail=1;

tail=1;
..=42;

tail=1; ..=42;
tail=1;

..=42;

Non Volatile Memory Library
● Testing does not stop bugs - it only catches them after the fact
● Need to stop bugs at the source
● Make NVM look exactly DRAM to the programmer
● Automate the extra bits
● Enable complex datastructures - such as trees

■ Not as easy to reason about consistency like our toy example
■ Impossible except for ninja programmers

● Non Volatile Memory Library (NVML)

http://nvml.io

http://nvml.io

PMEMoid entries;
int tail;
void append(int v) {

TX_BEGIN(...) {
pmemobj_tx_add_range_direct(&tail, sizeof(int));
tail++;
int* array = pmemobj_direct(entries);
pmemobj_tx_add_range_direct(&array[top], sizeof(T));
array[tail] = v;

} TX_END

NVML

Automation/Magic
1. Persistent pointers
2. No need for sfence, clflush
3. Order of updates irrelevant

Undo Log

TX_BEGIN(...) {
...
pmemobj_tx_add_range_direct(&tail, ..);

 tail++;
...
pmemobj_tx_add_range_direct(&array[tail], ..);
array[tail] = v;

} TX_END

&tail 10

&array[11] GARBAGE

ADDRESS CONTENT

UNDO LOG

Undo Log

TX_BEGIN(...) {
...
pmemobj_tx_add_range_direct(&tail, ..);

 tail++;
...
pmemobj_tx_add_range_direct(&array[tail], ..);
array[tail] = v;

} TX_END

&tail 10

&array[11] GARBAGE

ADDRESS CONTENT

UNDO LOG

If Hit TX_END - Success !
sfence;
foreach e in UNDO LOG:

clflush e.address
Delete UNDO LOG

Undo Log

TX_BEGIN(...) {
...
pmemobj_tx_add_range_direct(&tail, ..);

 tail++;
...
pmemobj_tx_add_range_direct(&array[tail], ..);
array[tail] = v;

} TX_END

&tail 10

&array[11] GARBAGE

ADDRESS CONTENT

UNDO LOG (in NVM)

If Hit TX_END - Success !
sfence;
foreach e in UNDO LOG:

clflush e.address
Delete UNDO LOG

else Restart - Failed !
foreach e in UNDO LOG:

*e.address = e.content
sfence
clflush e.address

Delete UNDO LOG

Undo Log == Failure Atomicity

TX_BEGIN(...) {
...
pmemobj_tx_add_range_direct(&tail, ..);

 tail++;
...
pmemobj_tx_add_range_direct(&array[tail], ..);
array[tail] = v;

} TX_END

&tail 10

&array[11] GARBAGE

ADDRESS CONTENT

UNDO LOG (in NVM)

All or nothing semantics in the face of failure
Like ACID from DBMS world

Profilers

● Tiered memory => Different performance flavors of main memory
● NVM slower and more plentiful than DRAM

CPUNVM
(most flavors)

DRAM
Long Latency

Low Bandwidth

Low Latency

High Bandwidth

NVM = Tiered performance of main memory

Performance and Placement

● Analytics - don’t care about persistence
● Use NVM as cheap, plentiful and slow memory

○ Surprising but projected use of NVM

● Choice of where to place data structures

CPU
NVM

DRAM
Long Latency

Low Bandwidth

Low Latency

High Bandwidth

Performance and Placement

CPU
NVM

DRAM
Long Latency

Low Bandwidth

Low Latency

High Bandwidth

Data Structure A: 20 accesses/sec
Data Structure B: 10 accesses/sec

Storage caching wisdom(aka 5 minute rule): More frequent accesses to faster memory

Performance and Placement

CPU
NVM

DRAM
Long Latency

Low Bandwidth

Low Latency

High Bandwidth

Data Structure A: 20 accesses/sec - sequential scans
Data Structure B: 10 accesses/sec - pointer chasing

Memory access performance strongly governed by access pattern and not just access frequency

Data Tiering in Heterogeneous Memory Systems. Eurosys 2016.Storage caching wisdom is wrong

More frequently accessed DS in slower memory!

Performance and Placement
● Little’s Law

InFlightRequests = Bandwidth * Latency

● Can have larger bandwidth even with longer latency

Bandwidth = InFlightRequests/Latency

● OOO CPU pipelines good at increasing InFlightRequests for scans
○ Prefetching
○ Non-Blocking Caches

● Scans should go to longer latency NVM even if more frequent
○ Pointer chasing needs high performance memory

X-Mem
● Guide data structure placement via profiling
● Beyond simple cache miss rate optimization

○ Eg. tools like vtune, gprof

● Need to determine access pattern (pointer or scan?)

Solution:

malloc(size, TAG) + map<Virtual Pages, TAG>

● TAG unique to datastructure: maps memory access to datastructure
● Access profiler determines best memory type for TAG
● malloc maps data structure blocks to pages from correct memory type

Example
● MemC3 hash table - An improved memcached

Name Frequency Type Location

512B buckets 2% Random DRAM

8K Values 8% Scans NVM

Conclusion
● NVM adds a whole new dimension to software engineering
● Opportunities for fundamental breakthroughs

○ Solve system design problems in new ways
○ Eg. fixing synchronous logging in Rocksdb

● Challenges
○ Data structures outlive the code - can’t restart on a bug!
○ Persistent pointers, ordering, processor caches
○ Tiered main memory architecture

● Software engineering solutions
○ New ideas in testing, libraries, profilers

● What will you do with NVM ?

