
Scaling Slack

Bing Wei
Infrastructure@Slack

2

3

Our Mission:
To make people’s working
lives simpler, more pleasant,
and more productive.

4

From supporting small teams

To serving gigantic organizations of
hundreds of thousands of users

5

Slack Scale

◈ 6M+ DAU, 9M+ WAU
5M+ peak simultaneously connected

◈ Avg 10+ hrs/weekday connected
Avg 2+ hrs/weekday in active use

◈ 55% of DAU outside of US

6

Cartoon Architecture

WebApp
PHP/Hack

Sharded
MySql

Messaging Server
Java

Job Queue
Redis/Kafka

HTTP

WebSocket

7

Outline

◈ The slowness problem
◈ Incremental Improvements
◈ Architecture changes

○ Flannel
○ Client Pub/Sub
○ Messaging Server

8

Challenge:
Slowness Connecting to Slack

9

Login Flow in 2015

User
1. HTTP POST
with user’s token

2. HTTP Response:
a snapshot of the team &
websocket URL

WebApp MySql

10

Some examples

number of
users/channels

response size

30 / 10 200K

500 / 200 2.5M

3K / 7K 20M

30K / 1K 60M

11

Login flow in 2015

User
1. HTTP POST
with user’s token

2. HTTP Response:
a snapshot of the team &
websocket url

WebApp

Messaging Server3. Websocket:
real-time events

MySql

12

Real-time Events on WebSocket

User
Messaging Server

WebSocket:
100+ types of events

e.g. chat messages,
typing indicator,
files uploads,
files comments,
threads replies,
user presence changes,
user profile changes,
reactions, pins, stars,
channel creations,
app installations,
etc.

13

Login Flow in 2015

◈ Clients Architecture
○ Download a snapshot of entire team
○ Updates trickle in through the WebSocket
○ Eventually consistent snapshot of whole team

14

Problems

Initial team snapshot takes time

15

Problems

Initial team snapshot takes time
Large client memory footprint

16

Problems

Initial team snapshot takes time
Large client memory footprint

Expensive reconnections

17

Problems

Initial team snapshot takes time
Large client memory footprint

Expensive reconnections
Reconnect storm

18

Outline

◈ The slowness problem
◈ Incremental Improvements
◈ Architecture changes

○ Flannel
○ Client Pub/Sub
○ Messaging Server

19

Improvements

◈ Smaller team snapshot
○ Client local storage + delta
○ Remove objects out + in parallel loading
○ Simplified objects: e.g. canonical Avatars

20

Improvements

◈ Incremental boot
○ Load one channel first

21

Improvements

◈ Rate Limit
◈ POPs
◈ Load Testing Framework

22

Support New Product Features

Product Launch

23

Cope with New Product Features

Product Launch

24

Still...

Limitations
◈ What if team sizes keep growing
◈ Outages when clients dump their local

storage

25

Outline

◈ The slowness problem
◈ Incremental Improvements
◈ Architecture changes

○ Flannel
○ Client Pub/Sub
○ Messaging Server

26

Client Lazy Loading

Download less data upfront
◈ Fetch more on demand

27

Flannel: Edge Cache Service

A query engine backed by cache
on edge locations

28

What are in Flannel’s cache

◈ Support big objects first
○ Users
○ Channels Membership
○ Channels

29

Login and Message Flow with Flannel

User Messaging Server

WebApp MySQLFlannel

3. WebSocket:
Stream Json events

1. WebSocket
connection

2. HTTP Post:
download a snapshot
of the team

30

A Man in the Middle

User

Messaging Server Flannel

Use real-time events to
update its cache
E.g. user creation,

user profile change,

channel creation,

user joins a channel,

channel convert to private

WebSocket WebSocket

31

Edge Locations

Mix of AWS & Google Cloud

main region
us-east-1

32

Examples Powered by Flannel

Quick
Switcher

33

Examples Powered by Flannel

Mention
Suggestion

34

Examples Powered by Flannel

Channel
Header

35

Examples Powered by Flannel

Channel
Sidebar

36

Examples Powered by Flannel

Team
Directory

37

Flannel Results

◈ Launched Jan 2017
○ Load 200K user team

◈ 5M+ simultaneous connections at
peak

◈ 1M+ clients queries/sec

38

Flannel Results

39

This is not the end of the story

40

Evolution of Flannel

41

Web Client Iterations

Flannel Just-In-Time Annotation

Right before Web clients are about to access
an object, Flannel pushes that object to clients.

42

A Closer Look

Why does Flannel sit on WebSocket?

43

Old Way of Cache Updates

Users

Messaging Server Flannel

LOTS of duplicated
Json events

44

Publish/Subscribe (Pub/Sub) to Update Cache

Users

Messaging Server Flannel

Pub/Sub
Thrift events

45

Pub/Sub Benefits

Less Flannel CPU
Simpler Flannel code

Schema data
Flexibility for cache management

46

Flexibility for Cache Management

Previously
◈ Load when the first user connects
◈ Unload when the last user disconnects

47

Flexibility for Cache Management

With Pub/Sub
◈ Isolate received events from user

connections

48

Another Closer Look

◈ With Pub/Sub, does Flannel need to
be on WebSocket path?

49

Next Step

Move Flannel out of WebSocket path

50

Next Step

Move Flannel out of WebSocket path

Why?
Separation & Flexibility

51

Evolution with Product Requirements

Grid for Big Enterprise

52

Team Affinity for Cache Efficiency

Before Grid

53

Team Affinity

Grid Aware

Now

54

Grid Awareness Improvements

Flannel Memory

Saves 22G of per host, 1.1TB total
55

Grid Awareness Improvements

DB Shard CPU Idle 25% -> 90% P99 User Connect Latency 40s -> 4s

For our biggest customer

56

Team Affinity

Grid Aware

Scatter & Gather

Future

57

Outline

◈ The slowness problem
◈ Incremental Improvements
◈ Architecture changes

○ Flannel
○ Client Pub/Sub
○ Messaging Server

58

Expand Pub/Sub to Client Side

Client Side Pub/Sub
reduces events Clients have to handle

59

Presence Events

60% of all events

O(N2)
1000 user team ⇒
1000 * 1000 = 1M events

60

Presence Pub/Sub

Clients
◈ Track who are in the

current view
◈ Subscribe/Unsubscribe to

Messaging server when
view changes

61

Outline

◈ The slowness problem
◈ Incremental Improvements
◈ Architecture changes

○ Flannel
○ Client Pub/Sub
○ Messaging Server

62

What is Messaging Server

Messaging Server

63

A Message Router

Messaging Server

64

Events Routing and Fanout

Messaging Server
WebApp/

DB

1.Events happen
on team

2.Events Fanout

65

Limitations

◈ Sharded by Team
Single point of failure

66

Limitations

◈ Sharded by Team
Single point of failure

◈ Shared Channels
Shared states among teams

67

68

Topic Sharding

Everything is a Topic
public/private channel, DM, group DM,

user, team, grid

69

Topic Sharding

Natural fit for shared channels

70

Topic Sharding

Natural fit for shared channels
Reduce user perceived failures

71

Other Improvements

Auto failure recovery

72

Other Improvements

Auto failure recovery
Publish/Subscribe

73

Other Improvements

Auto failure recovery
Publish/Subscribe
Fanout at the edge

74

Our Journey

Problem
Incremental

Change
Architectural

Change
Ongoing
Evolution

75

More To ComeJourney Ahead

Get in touch:
https://slack.com/jobs

76

Thanks!

Any questions?
@bingw11

77

