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Our Mission:
To make people’s working
lives simpler, more pleasant,
and more productive.
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From supporting small teams 

To serving gigantic organizations of         
hundreds of thousands of users
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Slack Scale 

◈ 6M+ DAU, 9M+ WAU
5M+ peak simultaneously connected

◈ Avg 10+ hrs/weekday connected
Avg 2+ hrs/weekday in active use

◈ 55% of DAU outside of US
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Cartoon Architecture 

WebApp
PHP/Hack

Sharded
MySql

Messaging Server 
Java

Job Queue
Redis/Kafka

HTTP

WebSocket
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Outline

◈ The slowness problem
◈ Incremental Improvements 
◈ Architecture changes

○ Flannel
○ Client Pub/Sub
○ Messaging Server
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Challenge: 
Slowness Connecting to Slack 
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Login Flow in 2015

User
1. HTTP POST 
with user’s token

2. HTTP Response: 
a snapshot of the team & 
websocket URL

WebApp MySql
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Some examples

number of 
users/channels

response size

30 / 10 200K

500 / 200 2.5M

3K / 7K 20M

30K / 1K 60M
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Login flow in 2015

User
1. HTTP POST 
with user’s token

2. HTTP Response: 
a snapshot of the team & 
websocket url

WebApp

Messaging Server3. Websocket: 
real-time events

MySql
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Real-time Events on WebSocket

User
Messaging Server 

WebSocket: 
100+ types of events

e.g. chat messages,
typing indicator,
files uploads, 
files comments,
threads replies,
user presence changes,
user profile changes, 
reactions, pins, stars,
channel creations,
app installations,
etc.
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Login Flow in 2015

◈ Clients Architecture
○ Download a snapshot of entire team
○ Updates trickle in through the WebSocket
○ Eventually consistent snapshot of whole team
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Problems

Initial team snapshot takes time
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Problems

Initial team snapshot takes time
Large client memory footprint
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Problems

Initial team snapshot takes time
Large client memory footprint

Expensive reconnections
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Problems

Initial team snapshot takes time
Large client memory footprint

Expensive reconnections
Reconnect storm
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Outline

◈ The slowness problem
◈ Incremental Improvements 
◈ Architecture changes

○ Flannel
○ Client Pub/Sub
○ Messaging Server

19



Improvements

◈ Smaller team snapshot
○ Client local storage + delta
○ Remove objects out + in parallel loading
○ Simplified objects: e.g. canonical Avatars
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Improvements

◈ Incremental boot
○ Load one channel first
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Improvements

◈ Rate Limit
◈ POPs 
◈ Load Testing Framework
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Support New Product Features 

Product Launch
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Cope with New Product Features 

Product Launch
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Still...

Limitations 
◈ What if team sizes keep growing
◈ Outages when clients dump their local 

storage 
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Outline

◈ The slowness problem
◈ Incremental Improvements 
◈ Architecture changes

○ Flannel
○ Client Pub/Sub
○ Messaging Server
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Client Lazy Loading

Download less data upfront
◈ Fetch more on demand
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Flannel: Edge Cache Service

A query engine backed by cache 
on edge locations
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What are in Flannel’s cache

◈ Support big objects first 
○ Users
○ Channels Membership
○ Channels
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Login and Message Flow with Flannel

User Messaging Server 

WebApp MySQLFlannel

3. WebSocket: 
Stream Json events

1. WebSocket 
connection

2. HTTP Post:
download a snapshot
of the team
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A Man in the Middle

User

Messaging Server Flannel

Use real-time events to 
update its cache
E.g. user creation,

user profile change,

channel creation,

user joins a channel,

channel convert to private

WebSocket WebSocket
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Edge Locations

Mix of AWS & Google Cloud

main region
us-east-1
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Examples Powered by Flannel

Quick 
Switcher
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Examples Powered by Flannel

Mention
Suggestion
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Examples Powered by Flannel

Channel
Header
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Examples Powered by Flannel

Channel
Sidebar
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Examples Powered by Flannel

Team
Directory
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Flannel Results

◈ Launched Jan 2017
○ Load 200K user team

◈ 5M+ simultaneous connections at 
peak

◈ 1M+ clients queries/sec
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Flannel Results
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This is not the end of the story
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Evolution of Flannel 
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Web Client Iterations

Flannel Just-In-Time Annotation

Right before Web clients are about to access 
an object, Flannel pushes that object to clients.
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A Closer Look

Why does Flannel sit on WebSocket?
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Old Way of Cache Updates

Users

Messaging Server Flannel

LOTS of duplicated 
Json events
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Publish/Subscribe (Pub/Sub) to Update Cache

Users

Messaging Server Flannel

Pub/Sub 
Thrift events
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Pub/Sub Benefits

Less Flannel CPU
Simpler Flannel code

Schema data
Flexibility for cache management
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Flexibility for Cache Management

Previously
◈ Load when the first user connects
◈ Unload when the last user disconnects

47



Flexibility for Cache Management

With Pub/Sub
◈ Isolate received events from user 

connections
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Another Closer Look 

◈ With Pub/Sub, does Flannel need to 
be on WebSocket path?
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Next Step

Move Flannel out of WebSocket path
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Next Step

Move Flannel out of WebSocket path

Why?
Separation & Flexibility
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Evolution with Product Requirements

Grid for Big Enterprise
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Team Affinity for Cache Efficiency

Before Grid
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Team Affinity
 

Grid Aware

Now
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Grid Awareness Improvements

Flannel Memory 

Saves 22G of per host, 1.1TB total 
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Grid Awareness Improvements

DB Shard CPU Idle 25% -> 90% P99 User Connect Latency 40s -> 4s

For our biggest customer 
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Team Affinity
 

Grid Aware

Scatter & Gather

Future
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Outline

◈ The slowness problem
◈ Incremental Improvements 
◈ Architecture changes

○ Flannel
○ Client Pub/Sub
○ Messaging Server
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Expand Pub/Sub to Client Side 

Client Side Pub/Sub
reduces events Clients have to handle

59



Presence Events

60% of all events

O(N2)
1000 user team ⇒
1000 * 1000 = 1M events
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Presence Pub/Sub

Clients
◈ Track who are in the 

current view
◈ Subscribe/Unsubscribe to 

Messaging server when 
view changes
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Outline

◈ The slowness problem
◈ Incremental Improvements 
◈ Architecture changes

○ Flannel
○ Client Pub/Sub
○ Messaging Server
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What is Messaging Server 

Messaging Server 
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A Message Router

Messaging Server
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Events Routing and Fanout

Messaging Server
WebApp/

DB

1.Events happen 
on team 

2.Events Fanout 
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Limitations

◈ Sharded by Team
Single point of failure
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Limitations

◈ Sharded by Team
Single point of failure

◈ Shared Channels
Shared states among teams
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Topic Sharding

Everything is a Topic
public/private channel, DM, group DM, 

user, team, grid
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Topic Sharding

Natural fit for shared channels
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Topic Sharding

Natural fit for shared channels
Reduce user perceived failures
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Other Improvements

Auto failure recovery
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Other Improvements

Auto failure recovery
Publish/Subscribe 
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Other Improvements

Auto failure recovery
Publish/Subscribe 
Fanout at the edge
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Our Journey

Problem
Incremental 

Change
Architectural

Change
Ongoing 
Evolution
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More To ComeJourney Ahead

Get in touch:
https://slack.com/jobs

76



Thanks!

Any questions?
@bingw11
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