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REVOLUTION

has begun




WebAssembly will change the way
we think of "web apps"”
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So..what is WebAssembly? aka wasm
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Efficient, low-level bytecode for the \Web
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Efficient
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-ast to load and execute
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low-level bytecode
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Intended as a compilation target
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int factorial(int n) {
if (n == 0) {
return 1;

} else {
return n * factorial(n - 1);

}
}
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Safe and portable

just like JavaScript is
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s it going to kill JavaScript’
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Nope!

says browser vendors
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“well..maybe...some day...a long time from now

(my own opinion)
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Will we compile JavaScript to WebAssembly?
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JavaScript is an extremely dynamic language
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Compiling JavaScript to WebAssembly would run slower

What about a something JavaScript-like?
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AssemblyScript, TurboScript, ThinScript, etc
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class Coordinates {

X: 164;
y: 164;
Z: 164;

constructor(x: i64, y: i64, z: 164) {
this.x = X;
this.y = vy;
this.z = z;
}
}

export function example() {
let position = new Coordinates(10, 20, 30);

delete position;

}
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WebAssembly is still missing things
for broad adoption
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vl MVP is best suited for languages like
C/C++ and Rust
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But other languages soon!

Things like Java, OCaml, and even brand new ones
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type schoolPerson = Teacher | Director | Student(string);

let greeting = (stranger) =>

switch stranger {

| Teacher => "Hey professor!”

' Director => "Hello director.”

| Student("Richard") => "Still here Ricky?"

| Student(anyOtherName) => "Hey, " ++ anyOtherName ++ "."
}s
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When should | target WebAssembly right now?
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Heavily CPU-bound number computations
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Games

Physics Simulation
Encryption
Compression
Video Decoding
Audio Mixing

Language Detection
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Games

Physics Simulation
Encryption
Compression
Video Decoding
Audio Mixing

Language Detection
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asm-dom

asmdom: :VNodex vnode = (
<div>
<h1>Hello world!</h1>
</div>

) ;

auto rootNode = emscripten::val::global("document").call<emscripten::val>(
""getElementById",
std::string("root")

) ;

asmdom: :patch(rootNode, vnode);

https://goo.gl/ XWBeme



Other use cases just around the corner
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You'll likely consume compiled
WebAssembly libraries even sooner
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What was that binary stuff?
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int factorial(int n) {

if (n ==
return
} else {
return
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n * factorial(n - 1);
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Binary can be a little intimidating
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Protip: don't worry about it
(unless of course, you want to)
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Textual representation to the rescue!
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(func $factorial (param $n i32) (result i32)
get local $n
132.const
132.ed
if $ifo
132.const
return
end $if0
get local $n
132.const
132.sub
call $factorial
get local $n
132.mul
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WebAssembly is a stack machine language
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stack machine: instructions on a stack

Jay Phelps | ¥ @_jayphelps






MNEMONIC opcode

132.add OX63

01101010



132.const 1
132.const 2
132.add




132.const 1




132.const 2




132.add




132.add




132.const

132.const
132.add
call $log
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Compilers usually apply optimizations

real-world output is often less understandable to humans
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132.const

132.const
132.add
call $log
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132.const
call $log
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Most tooling supports an Abstract Syntax Tree (AST)

still compiled and evaluated as a stack machine
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132.const
132.const
132.add

call $log
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(call %$log

(i32.add
(i32.const 1)
(i32.const 2)

)
)
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s-expressions
Yep, looks like Lisp

(call %$log

(i32.add
(i32.const 1)
(i32.const 2)

)
)
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Source map support is coming
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What about memory on the heap?

Jay Phelps | ¥ @_jayphelps



A linear memory is a contiguous, byte-
addressable range of memory
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Accessed with Instructions like
1I32.1oad and i32.store
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How do | get started?
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https://mbebenita.github.io/WasmExplorer/

<& C' @ Secure https://mbebenita.github.io/WasmExplorer/

WebAssembly Explorer v2.16

Firefox x86 Assembly <
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int example(int a) {
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5 log(1);
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(type $FUNCSIG$vi (func
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(import "env" "log" (func
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(export "memory" (memory $0
))
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https://github.com/WebAssembly/wabt

WABT: The WebAssembly Binary Toolkit

WABT (we pronounce it "wabbit") is a suite of tools for WebAssembly, including:

o wat2wasm: translate from WebAssembly text format to the WebAssembly binary format

o« wasm2wat: the inverse of wat2wasm, translate from the binary format back to the text format (also known as a .wat)
o wasm-objdump: print information about a wasm binary. Similiar to objdump.

e wasm-interp: decode and run a WebAssembly binary file using a stack-based interpreter

e wat-desugar: parse .wat text form as supported by the spec interpreter (s-expressions, flat syntax, or mixed) and print
"canonical" flat format

o wasm-link: simple linker for merging multiple wasm files.



https://github.com/WebAssembly/binaryen

Binaryen
Binaryen is a compiler and toolchain infrastructure library for WebAssembly, written in C++. It aims to make compiling to

WebAssembly easy, fast, and effective:

e Binaryen has a simple C API in a single header, as well as C++ bindings. It can also be used from JavaScript. It accepts input
iIn WebAssembly-like form but also accepts a general control flow graph for compilers that prefer that.

o wasm-shell: A shell that can load and interpret WebAssembly code. It can also run the spec test suite.
e wasm-opt: Loads WebAssembly and runs Binaryen IR passes on it.

e asm2wasm: An asm.js-to-WebAssembly compiler, using Emscripten's asm optimizer infrastructure. This is used by
Emscripten in Binaryen mode when it uses Emscripten's fastcomp asm.js backend.

e wasm2asm: A WebAssembly-to-asm.js compiler (still experimental).

e s2wasm: A compiler from the .s format emitted by the new WebAssembly backend being developed in LLVM. This is
used by Emscripten in Binaryen mode when it integrates with the new LLVM backend.

e« wasm-merge: Combines wasm files into a single big wasm file (without sophisticated linking).
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$ emcc main.c -s WASM=1 -o app.html
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webassembly.org

© @ [} webAssembly

& C'  ©® webassembly.org

Overview Demo Getting Started Docs Spec Community Roadmap FAQ

WEBASSEMBLY

The initial version of WebAssembly has reached cross-browser consensus. Learn more

WebAssembly or wasm is a new portable, size- and load-time-efficient format suitable
for compilation to the web.

WebAssembly is currently being designed as an open standard by a W3C Community Group that
includes representatives from all major browsers.

Efficient and fast Safe

The wasm stack machine is designed to be WebAssembly describes a memory-safe,
encoded in a size- and load-time-efficient binary sandboxed execution environment that may even
format. WebAssembly aims to execute at native be implemented inside existing JavaScript virtual
speed by taking advantage of common hardware machines. When embedded in the web,
capabilities available on a wide range of platforms. WebAssembly will enforce the same-origin and
permissions security policies of the browser.

Open and debuggable Part of the open web platform
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Webpack is adding support (!!!)

hey received a $125,000 grant from MQOSS
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'magine a cpp-loader / rust-loader
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What's missing?
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Direct access to Web APls

You have call into Javascript, right now
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Garbage collection

also necessary for better interop with JavaScript and Webl|DL
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Multi-threading
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Browser support?
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The revolution is just beginning
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Ffficient, low-level bytecode for the Web
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Efhcient, low-level bytecode
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Questions?
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Thanks!
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void log(char *);

void example() {
log("wasm™);

}
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(module
(import "env" "log" (func $log (param i32)))
(memory $0 1)
(data (i32.const 0) "wasm\60")
(func $example
(call $log
(i32.const 9)

)
)
)
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(module
(import (func $log (param i32)))
(memory $0 1)
(data (i32.const 9) "wasm\6o0")
(func $example
(call $log
(i32.const 9)

)
)
)
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(module
(import (func $log (param i32)))
(memory $0 1)
(data (i32.const 0) )
(func $example
(call $log
(i32.const ©)

)
)
)
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