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WebAssembly will change the way 
we think of "web apps"
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So...what is WebAssembly? aka wasm
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Efficient, low-level bytecode for the Web
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Fast to load and execute
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Efficient, low-level bytecode for the Web
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0x6a
01101010
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Intended as a compilation target



int	factorial(int	n)	{	
		if	(n	==	0)	{	
				return	1;	
		}	else	{	
				return	n	*	factorial(n	-	1);	
		}	
}



int	factorial(int	n)	{	
		if	(n	==	0)	{	
				return	1;	
		}	else	{	
				return	n	*	factorial(n	-	1);	
		}	
}

00	61	73	6D	01	00	00	00	01	
86	80	80	80	00	01	60	01	7F	
01	7F	03	82	80	80	80	00	01	
00	06	81	80	80	80	00	00	0A	
9D	80	80	80	00	01	97	80	80	
80	00	00	20	00	41	00	46	04	
40	41	01	0F	0B	20	00	41	01	
6B	10	00	20	00	6C	0B
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Safe and portable 
just like JavaScript is
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Is it going to kill JavaScript?
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Nope!
says browser vendors

*
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*well...maybe...some day...a long time from now
(my own opinion)
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Will we compile JavaScript to WebAssembly?
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JavaScript is an extremely dynamic language
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Compiling JavaScript to WebAssembly would run slower

What about a something JavaScript-like?
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AssemblyScript, TurboScript, ThinScript, etc
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class	Coordinates	{	
		x:	i64;	
		y:	i64;	
		z:	i64;	

		constructor(x:	i64,	y:	i64,	z:	i64)	{	
				this.x	=	x;	
				this.y	=	y;	
				this.z	=	z;	
		}	
}	

export	function	example()	{	
		let	position	=	new	Coordinates(10,	20,	30);	
		//	later	
		delete	position;	
}	
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WebAssembly is still missing things 
for broad adoption
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v1 MVP is best suited for languages like 
C/C++ and Rust
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But other languages soon!
Things like Java, OCaml, and even brand new ones
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type	schoolPerson	=	Teacher	|	Director	|	Student(string);	

let	greeting	=	(stranger)	=>	
		switch	stranger	{	
				|	Teacher	=>	"Hey	professor!"	
				|	Director	=>	"Hello	director."	
				|	Student("Richard")	=>	"Still	here	Ricky?"	
				|	Student(anyOtherName)	=>	"Hey,	"	++	anyOtherName	++	"."	
		};



Jay Phelps |         @_jayphelps

When should I target WebAssembly right now?
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Heavily CPU-bound number computations
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Games

Physics Simulation

Encryption

Compression

Video Decoding

Audio Mixing

Language Detection
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https://goo.gl/YWMpdp



asm-dom

https://goo.gl/XWBeme
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Other use cases just around the corner
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You'll likely consume compiled 
WebAssembly libraries even sooner
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What was that binary stuff?



int	factorial(int	n)	{	
		if	(n	==	0)	{	
				return	1;	
		}	else	{	
				return	n	*	factorial(n	-	1);	
		}	
}

00	61	73	6D	01	00	00	00	01	
86	80	80	80	00	01	60	01	7F	
01	7F	03	82	80	80	80	00	01	
00	06	81	80	80	80	00	00	0A	
9D	80	80	80	00	01	97	80	80	
80	00	00	20	00	41	00	46	04	
40	41	01	0F	0B	20	00	41	01	
6B	10	00	20	00	6C	0B



00	61	73	6D	01	00	00	00	01	
86	80	80	80	00	01	60	01	7F	
01	7F	03	82	80	80	80	00	01	
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9D	80	80	80	00	01	97	80	80	
80	00	00	20	00	41	00	46	04	
40	41	01	0F	0B	20	00	41	01	
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86	80	80	80	00	01	60	01	7F	
01	7F	03	82	80	80	80	00	01	
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86	80	80	80	00	01	60	01	7F	
01	7F	03	82	80	80	80	00	01	
00	06	81	80	80	80	00	00	0A	
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80	00	00	20	00	41	00	46	04	
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86	80	80	80	00	01	60	01	7F	
01	7F	03	82	80	80	80	00	01	
00	06	81	80	80	80	00	00	0A	
9D	80	80	80	00	01	97	80	80	
80	00	00	20	00	41	00	46	04	
40	41	01	0F	0B	20	00	41	01	
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Binary can be a little intimidating
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Protip: don't worry about it
(unless of course, you want to)
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Textual representation to the rescue!
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(func	$factorial	(param	$n	i32)	(result	i32)	
		get_local	$n	
		i32.const	0	
		i32.eq	
		if	$if0	
		i32.const	1	
		return	
		end	$if0	
		get_local	$n	
		i32.const	1	
		i32.sub	
		call	$factorial	
		get_local	$n	
		i32.mul	
)
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(func	$factorial	(param	$n	i32)	(result	i32)	
		get_local	$n	
		i32.const	0	
		i32.eq	
		if	$if0	
		i32.const	1	
		return	
		end	$if0	
		get_local	$n	
		i32.const	1	
		i32.sub	
		call	$factorial	
		get_local	$n	
		i32.mul	
)
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WebAssembly is a stack machine language
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stack machine: instructions on a stack



1	+	2



i32.add 0x6a

opcode

01101010

mnemonic



stack

i32.const	1	
i32.const	2	
i32.add



i32.const	1	
i32.const	2	
i32.add

i32.const	1	

stack

1



i32.const	1	
i32.const	2	
i32.add
i32.const	2	

stack

2

1



i32.const	1	
i32.const	2	
i32.addi32.add

stack

1

2



i32.const	1	
i32.const	2	
i32.add

stack

3

i32.add



Jay Phelps |         @_jayphelps

call	$log	

i32.const	1	
i32.const	2	
i32.add
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Compilers usually apply optimizations
real-world output is often less understandable to humans



i32.const	1	
i32.const	2	
i32.add	
call	$log	
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i32.const	3	
call	$log	

Jay Phelps |         @_jayphelps



Jay Phelps |         @_jayphelps

Most tooling supports an Abstract Syntax Tree (AST)
still compiled and evaluated as a stack machine



i32.const	1	
i32.const	2	
i32.add	
call	$log	
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(call	$log	
		(i32.add	
				(i32.const	1)	
				(i32.const	2)	
		)	
)
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(call	$log	
		(i32.add	
				(i32.const	1)	
				(i32.const	2)	
		)	
)
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s-expressions
Yep, looks like Lisp
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Source map support is coming
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What about memory on the heap?
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A linear memory is a contiguous, byte-
addressable range of memory
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Accessed with instructions like 
i32.load and i32.store
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0 1 2 3 4 5 6 7 8 9 10
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0 1 2 3 4 5 6 7 8 9 10

1 byte
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0 1 2 3 4 5 6 7 8 9 10
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0 1 2 3 4 5 6 7 8 9 10

w a s m
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w a s m
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0 1 2 3 4 5 6 7 8 9 10

119 97 115 109
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How do I get started?



https://mbebenita.github.io/WasmExplorer/
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https://github.com/WebAssembly/wabt
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https://github.com/WebAssembly/binaryen
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$	emcc	main.c	-s	WASM=1	-o	app.html
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webassembly.org
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Webpack is adding support (!!!)
They received a $125,000 grant from MOSS
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Imagine a cpp-loader / rust-loader
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What's missing?
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Direct access to Web APIs
You have call into JavaScript, right now
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Garbage collection
also necessary for better interop with JavaScript and WebIDL
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Multi-threading
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Browser support?
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The revolution is just beginning
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Efficient, low-level bytecode for the Web
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Efficient, low-level bytecode for the Web
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Questions?

       @_jayphelps
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Thanks!

       @_jayphelps
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void	log(char	*);	

void	example()	{	
		log("wasm");	
}



(module	
		(import	"env"	"log"	(func	$log	(param	i32)))	
		(memory	$0	1)	
		(data	(i32.const	0)	"wasm\00")	
		(func	$example	
				(call	$log	
						(i32.const	0)	
				)	
		)	
)	
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(module	
		(import	"env"	"log"	(func	$log	(param	i32)))	
		(memory	$0	1)	

		(func	$example	
				(call	$log	
						(i32.const	0)	
				)	
		)	
)	
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		(data	(i32.const	0)	"wasm\00")	



(module	
		(import	"env"	"log"	(func	$log	(param	i32)))	
		(memory	$0	1)	
		(data	(i32.const	0)	"wasm\00")	
		(func	$example	

		)	
)	
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				(call	$log	
						(i32.const	0)	
				)	


