WebAssemny

REVOLUTION

has begun

WebAssembly will change the way
we think of "web apps"”

Jay Phelps | ¥ @_jayphelps

Jay Phelps

Senior Software Engineer |
W @_jayphelps

So..what is WebAssembly? aka wasm

Jay Phelps | ¥ @_jayphelps

Efficient, low-level bytecode for the \Web

Jay Phelps | ¥ @_jayphelps

Efficient

Jay Phelps | ¥ @_jayphelps

-ast to load and execute

Jay Phelps | ¥ @_jayphelps

low-level bytecode

Jay Phelps | ¥ @_jayphelps

Ox6a

01101010

Jay Phelps | ¥ @_jayphelps

Intended as a compilation target

Jay Phelps | ¥ @_jayphelps

int factorial(int n) {
if (n == 0) {
return 1;

} else {
return n * factorial(n - 1);

}
}

int factorial(int n) {

if (n ==
return
} else {
return

Y _

n * factorial(n - 1);

00
86
01
00
9D
80
40
6B

61
80
/F
06
80
00
41
10

/3
80
03
31
80
00
01
00

6D
80
82
80
80
20
OF
20

01
00
80
80
00
00
OB
00

00
01
80
80
01
41
20
6C

00
60
80
00
97
00
00
OB

00
01
00
00
80
46
41

01
/F
01
OA
80
04
01

Safe and portable

just like JavaScript is

Jay Phelps | ¥ @_jayphelps

s it going to kill JavaScript’

Jay Phelps | ¥ @_jayphelps

Nope!

says browser vendors

Jay Phelps | ¥ @_jayphelps

“well..maybe...some day...a long time from now

(my own opinion)

Jay Phelps | @_jayphelps

Will we compile JavaScript to WebAssembly?

Jay Phelps | ¥ @_jayphelps

JavaScript is an extremely dynamic language

Jay Phelps | ¥ @_jayphelps

¢ia" Brandon Dail
&i @aweary

Q you can push into Array.prototype and
totally mess up empty arrays

Array.prototype.push("lol")
1

var empty = [];

undefined

empty [0]
il 'LO'LII

8:55 PM -9 Nov 2017

924 Retweets 1,890 Likes Q @ @ (é) ?g vy (% ‘i-' C:)

Jay Phelps | ¥ @_jayphelps

Compiling JavaScript to WebAssembly would run slower

What about a something JavaScript-like?

Jay Phelps | ¥ @_jayphelps

AssemblyScript, TurboScript, ThinScript, etc

Jay Phelps | ¥ @_jayphelps

class Coordinates {

X: 164;
y: 164;
Z: 164;

constructor(x: i64, y: i64, z: 164) {
this.x = X;
this.y = vy;
this.z = z;
}
}

export function example() {
let position = new Coordinates(10, 20, 30);

delete position;

}

Jay Phelps | ¥ @_jayphelps

WebAssembly is still missing things
for broad adoption

Jay Phelps | ¥ @_jayphelps

vl MVP is best suited for languages like
C/C++ and Rust

Jay Phelps | ¥ @_jayphelps

But other languages soon!

Things like Java, OCaml, and even brand new ones

Jay Phelps | ¥ @_jayphelps

type schoolPerson = Teacher | Director | Student(string);

let greeting = (stranger) =>

switch stranger {

| Teacher => "Hey professor!”

' Director => "Hello director.”

| Student("Richard") => "Still here Ricky?"

| Student(anyOtherName) => "Hey, " ++ anyOtherName ++ "."
}s

Jay Phelps | ¥ @_jayphelps

When should | target WebAssembly right now?

Jay Phelps | @_jayphelps

Heavily CPU-bound number computations

Jay Phelps | ¥ @_jayphelps

Games

Physics Simulation
Encryption
Compression
Video Decoding
Audio Mixing

Language Detection

Jay Phelps | ¥ @_jayphelps

Games

Physics Simulation
Encryption
Compression
Video Decoding
Audio Mixing

Language Detection

Jay Phelps | ¥ @_jayphelps

& unity

UNREAL

ENGINE

>
<
[l

EpicZenGarden @ X =+
= Search or enter address Search w B ¥

Clear cache (205 MB) FullScreen

https://goo.gl/yvV92X

® @ Funky Karts 1 X

X @ Secure https://www.funkykarts.rocks/demo.htm!

I

https://goo.gl/YWMpdp

asm-dom

asmdom: :VNodex vnode = (
<div>
<h1>Hello world!</h1>
</div>

) ;

auto rootNode = emscripten::val::global("document").call<emscripten::val>(
""getElementById",
std::string("root")

) ;

asmdom: :patch(rootNode, vnode);

https://goo.gl/ XWBeme

Other use cases just around the corner

Jay Phelps | ¥ @_jayphelps

You'll likely consume compiled
WebAssembly libraries even sooner

Jay Phelps | ¥ @_jayphelps

What was that binary stuff?

Jay Phelps | ¥ @_jayphelps

int factorial(int n) {

if (n ==
return
} else {
return

Y _

n * factorial(n - 1);

00
86
01
00
9D
80
40
6B

61
80
/F
06
80
00
41
10

/3
80
03
31
80
00
01
00

6D
80
82
80
80
20
OF
20

01
00
80
80
00
00
OB
00

00
01
80
80
01
41
20
6C

00
60
80
00
97
00
00
OB

00
01
00
00
80
46
41

01
/F
01
OA
80
04
01

00
86
01
00
9D
80
40
6B

61
80
/F
06
80
00
41
10

/3
80
03
81
80
00
01
00

6D
80
82
80
80
20
OF
20

01
00
80
80
00
00
OB
00

00
01
80
80
01
41
20
6C

00
60
80
00
97
00
00
OB

00
01
00
00
80
46
41

01
/F
01
OA
80
04
01

1%
86
01
00
9D
80
40
6B

61
80
/F
06
80
0O
41
10

/3
80
03
81
80
00O
01
00O

6D
80
82
80
80
20
OF
20

01
915
80
80
1%
915

0o
01
80
80
01
41

00O
60
80
1%
97
00O

OB 20 00

915

6C

OB

0o
01
0o
0O
80
46
41

01
/F
01
OA
80
04
01

00
86
01
00
9D

80

6B

61 /73 6D 01
80 80 80 00
/F 63 82 80
06 81 80 80
80 80 80 00
00 00 20 00

49 41 91 OF oB

10 60 20 00

00
01
80
80
01
41
20
6C

00 41 01

03 82 80 80 80
81 80 80 80 00
80 89 00 91 97/
00 20 00 41 00

Binary can be a little intimidating

Jay Phelps | ¥ @_jayphelps

Protip: don't worry about it
(unless of course, you want to)

Jay Phelps | ¥ @_jayphelps

Textual representation to the rescue!

Jay Phelps | ¥ @_jayphelps

(func $factorial (param $n i32) (result i32)
get local $n
132.const
132.ed
if $ifo
132.const
return
end $if0
get local $n
132.const
132.sub
call $factorial
get local $n
132.mul

Jay Phelps | ¥ @_jayphelps

Jay Phelps | ¥ @_jayphelps

WebAssembly is a stack machine language

Jay Phelps | ¥ @_jayphelps

stack machine: instructions on a stack

Jay Phelps | ¥ @_jayphelps

MNEMONIC opcode

132.add OX63

01101010

132.const 1
132.const 2
132.add

132.const 1

132.const 2

132.add

132.add

132.const

132.const
132.add
call $log

Jay Phelps | ¥ @_jayphelps

Compilers usually apply optimizations

real-world output is often less understandable to humans

Jay Phelps | ¥ @_jayphelps

132.const

132.const
132.add
call $log

Jay Phelps | ¥ @_jayphelps

132.const
call $log

Jay Phelps | ¥ @_jayphelps

Most tooling supports an Abstract Syntax Tree (AST)

still compiled and evaluated as a stack machine

Jay Phelps | @_jayphelps

132.const
132.const
132.add

call $log

Jay Phelps | ¥ @_jayphelps

(call %$log

(i32.add
(i32.const 1)
(i32.const 2)

)
)

Jay Phelps | @_jayphelps

s-expressions
Yep, looks like Lisp

(call %$log

(i32.add
(i32.const 1)
(i32.const 2)

)
)

Jay Phelps | @_jayphelps

Source map support is coming

Jay Phelps | ¥ @_jayphelps

What about memory on the heap?

Jay Phelps | ¥ @_jayphelps

A linear memory is a contiguous, byte-
addressable range of memory

Jay Phelps | @_jayphelps

Accessed with Instructions like
1I32.1oad and i32.store

Jay Phelps | ¥ @_jayphelps

Jay Phelps | ¥ @_jayphelps

Jay Phelps | ¥ @_jayphelps

Jay Phelps | ¥ @_jayphelps

Jay Phelps | ¥ @_jayphelps

Jay Phelps | ¥ @_jayphelps

T e 11
1 2 3 4 5 6 7

0 8 9 10

Jay Phelps | ¥ @_jayphelps

How do | get started?

Jay Phelps | ¥ @_jayphelps

https://mbebenita.github.io/WasmExplorer/

<& C' @ Secure https://mbebenita.github.io/WasmExplorer/

WebAssembly Explorer v2.16

Firefox x86 Assembly <

wasm-function[1]:

Options C99 -0O3 COMPILE BRWEL:

void log(int); 1 (module

. Auto Compile

1D LLVM x86 Assembly

Examples

C99

Optimization Level

D Fast Math

[:]Iﬂolnﬁne

int example(int a) {
4 (int 1 = 0; 1 10; 1++) {
5 log(1);

v Console

. (ompiling (/(++ to Wast
Compiling .wast to x86
Compiling .wast to .wasm
Compiling C/C++ to Wast
Compiling .wast to x86

(type $FUNCSIG$vi (func
(param 132)))

(import "env" "log" (func
$log (param i32)))

(table @ anyfunc)

(memory $0 1)

(export "memory" (memory $0
))

(export "example" (func
$example))

(func $example (param $0 i32
) (result 132)
(local $1 132)
(call $log

(132.const 0)

)

rsp, 0x18

gword ptr [rl4 + 0x28], rs

Ox1loa

Ox00000e :

edi, edi

gword ptr [rsp], rl4

rax, qword ptr

rl4, gword ptr

rl5, gword ptr
rax

rl4, gword ptr

rl5, gword ptr

edi, 1

(rl4 + 0x30
rl4 + 0Ox38

[r1l4 + 0Ox18

[rsp]

[rl4 + 0Ox18

e—

52

https://github.com/WebAssembly/wabt

WABT: The WebAssembly Binary Toolkit

WABT (we pronounce it "wabbit") is a suite of tools for WebAssembly, including:

o wat2wasm: translate from WebAssembly text format to the WebAssembly binary format

o« wasm2wat: the inverse of wat2wasm, translate from the binary format back to the text format (also known as a .wat)
o wasm-objdump: print information about a wasm binary. Similiar to objdump.

e wasm-interp: decode and run a WebAssembly binary file using a stack-based interpreter

e wat-desugar: parse .wat text form as supported by the spec interpreter (s-expressions, flat syntax, or mixed) and print
"canonical" flat format

o wasm-link: simple linker for merging multiple wasm files.

https://github.com/WebAssembly/binaryen

Binaryen
Binaryen is a compiler and toolchain infrastructure library for WebAssembly, written in C++. It aims to make compiling to

WebAssembly easy, fast, and effective:

e Binaryen has a simple C API in a single header, as well as C++ bindings. It can also be used from JavaScript. It accepts input
iIn WebAssembly-like form but also accepts a general control flow graph for compilers that prefer that.

o wasm-shell: A shell that can load and interpret WebAssembly code. It can also run the spec test suite.
e wasm-opt: Loads WebAssembly and runs Binaryen IR passes on it.

e asm2wasm: An asm.js-to-WebAssembly compiler, using Emscripten's asm optimizer infrastructure. This is used by
Emscripten in Binaryen mode when it uses Emscripten's fastcomp asm.js backend.

e wasm2asm: A WebAssembly-to-asm.js compiler (still experimental).

e s2wasm: A compiler from the .s format emitted by the new WebAssembly backend being developed in LLVM. This is
used by Emscripten in Binaryen mode when it integrates with the new LLVM backend.

e« wasm-merge: Combines wasm files into a single big wasm file (without sophisticated linking).

Jay Phelps | ¥ @_jayphelps

3

$ emcc main.c -s WASM=1 -o app.html

Jay Phelps | ¥ @_jayphelps

webassembly.org

© @ [} webAssembly

& C' ©® webassembly.org

Overview Demo Getting Started Docs Spec Community Roadmap FAQ

WEBASSEMBLY

The initial version of WebAssembly has reached cross-browser consensus. Learn more

WebAssembly or wasm is a new portable, size- and load-time-efficient format suitable
for compilation to the web.

WebAssembly is currently being designed as an open standard by a W3C Community Group that
includes representatives from all major browsers.

Efficient and fast Safe

The wasm stack machine is designed to be WebAssembly describes a memory-safe,
encoded in a size- and load-time-efficient binary sandboxed execution environment that may even
format. WebAssembly aims to execute at native be implemented inside existing JavaScript virtual
speed by taking advantage of common hardware machines. When embedded in the web,
capabilities available on a wide range of platforms. WebAssembly will enforce the same-origin and
permissions security policies of the browser.

Open and debuggable Part of the open web platform

Jay Phelps | @_jayphelps

Webpack is adding support (!!!)

hey received a $125,000 grant from MQOSS

Jay Phelps | ¥ @_jayphelps

'magine a cpp-loader / rust-loader

Jay Phelps | ¥ @_jayphelps

What's missing?

Jay Phelps | ¥ @_jayphelps

Direct access to Web APls

You have call into Javascript, right now

Jay Phelps | ¥ @_jayphelps

Garbage collection

also necessary for better interop with JavaScript and Webl|DL

Jay Phelps | ¥ @_jayphelps

Multi-threading

Jay Phelps | ¥ @_jayphelps

Browser support?

Jay Phelps | ¥ @_jayphelps

. Android * Chrome for
Browser Android

IE Edge Firefox Chrome Safari Opera IOS Safari Opera Mini

-

11 11 56 0

—\
~

The revolution is just beginning

Jay Phelps | ¥ @_jayphelps

-l -
S
‘/ arbm
O E
ck
+— E
D

Ffficient, low-level bytecode for the Web

Jay Phelps | @_jayphelps

Efhcient, low-level bytecode

Jay Phelps | @_jayphelps

‘ . T

Questions?

@_jayphelps

Thanks!

@_jayphelps

Jay Phelps | @_jayphelps

Jay Phelps | @_jayphelps

void log(char *);

void example() {
log("wasm™);

}

Jay Phelps | ¥ @_jayphelps

(module
(import "env" "log" (func $log (param i32)))
(memory $0 1)
(data (i32.const 0) "wasm\60")
(func $example
(call $log
(i32.const 9)

)
)
)

Jay Phelps | ¥ @_jayphelps

(module
(import (func $log (param i32)))
(memory $0 1)
(data (i32.const 9) "wasm\6o0")
(func $example
(call $log
(i32.const 9)

)
)
)

Jay Phelps | ¥ @_jayphelps

(module
(import (func $log (param i32)))
(memory $0 1)
(data (i32.const 0))
(func $example
(call $log
(i32.const ©)

)
)
)

Jay Phelps | ¥ @_jayphelps

