
WebAssembly

Jay Phelps | @_jayphelps

The

Revolution
has begun

Jay Phelps | @_jayphelps

WebAssembly will change the way
we think of "web apps"

Senior Software Engineer |

 @_jayphelps

Jay Phelps

Jay Phelps | @_jayphelps

So...what is WebAssembly? aka wasm

Jay Phelps | @_jayphelps

Efficient, low-level bytecode for the Web

Jay Phelps | @_jayphelps

Efficient, low-level bytecode for the Web

Jay Phelps | @_jayphelps

Fast to load and execute

Jay Phelps | @_jayphelps

Efficient, low-level bytecode for the Web

Jay Phelps | @_jayphelps

0x6a
01101010

Jay Phelps | @_jayphelps

Intended as a compilation target

int	factorial(int	n)	{	
		if	(n	==	0)	{	
				return	1;	
		}	else	{	
				return	n	*	factorial(n	-	1);	
		}	
}

int	factorial(int	n)	{	
		if	(n	==	0)	{	
				return	1;	
		}	else	{	
				return	n	*	factorial(n	-	1);	
		}	
}

00	61	73	6D	01	00	00	00	01	
86	80	80	80	00	01	60	01	7F	
01	7F	03	82	80	80	80	00	01	
00	06	81	80	80	80	00	00	0A	
9D	80	80	80	00	01	97	80	80	
80	00	00	20	00	41	00	46	04	
40	41	01	0F	0B	20	00	41	01	
6B	10	00	20	00	6C	0B

Jay Phelps | @_jayphelps

Safe and portable
just like JavaScript is

Jay Phelps | @_jayphelps

Is it going to kill JavaScript?

Jay Phelps | @_jayphelps

Nope!
says browser vendors

*

Jay Phelps | @_jayphelps

*well...maybe...some day...a long time from now
(my own opinion)

Jay Phelps | @_jayphelps

Will we compile JavaScript to WebAssembly?

Jay Phelps | @_jayphelps

JavaScript is an extremely dynamic language

Jay Phelps | @_jayphelps

Jay Phelps | @_jayphelps

Compiling JavaScript to WebAssembly would run slower

What about a something JavaScript-like?

Jay Phelps | @_jayphelps

AssemblyScript, TurboScript, ThinScript, etc

Jay Phelps | @_jayphelps

class	Coordinates	{	
		x:	i64;	
		y:	i64;	
		z:	i64;	

		constructor(x:	i64,	y:	i64,	z:	i64)	{	
				this.x	=	x;	
				this.y	=	y;	
				this.z	=	z;	
		}	
}	

export	function	example()	{	
		let	position	=	new	Coordinates(10,	20,	30);	
		//	later	
		delete	position;	
}	

Jay Phelps | @_jayphelps

WebAssembly is still missing things
for broad adoption

Jay Phelps | @_jayphelps

v1 MVP is best suited for languages like
C/C++ and Rust

Jay Phelps | @_jayphelps

But other languages soon!
Things like Java, OCaml, and even brand new ones

Jay Phelps | @_jayphelps

type	schoolPerson	=	Teacher	|	Director	|	Student(string);	

let	greeting	=	(stranger)	=>	
		switch	stranger	{	
				|	Teacher	=>	"Hey	professor!"	
				|	Director	=>	"Hello	director."	
				|	Student("Richard")	=>	"Still	here	Ricky?"	
				|	Student(anyOtherName)	=>	"Hey,	"	++	anyOtherName	++	"."	
		};

Jay Phelps | @_jayphelps

When should I target WebAssembly right now?

Jay Phelps | @_jayphelps

Heavily CPU-bound number computations

Jay Phelps | @_jayphelps

Games

Physics Simulation

Encryption

Compression

Video Decoding

Audio Mixing

Language Detection

Jay Phelps | @_jayphelps

Games

Physics Simulation

Encryption

Compression

Video Decoding

Audio Mixing

Language Detection

Jay Phelps | @_jayphelps

Jay Phelps | @_jayphelpshttps://goo.gl/yvV92X

https://goo.gl/YWMpdp

asm-dom

https://goo.gl/XWBeme

Jay Phelps | @_jayphelps

Other use cases just around the corner

Jay Phelps | @_jayphelps

You'll likely consume compiled
WebAssembly libraries even sooner

Jay Phelps | @_jayphelps

What was that binary stuff?

int	factorial(int	n)	{	
		if	(n	==	0)	{	
				return	1;	
		}	else	{	
				return	n	*	factorial(n	-	1);	
		}	
}

00	61	73	6D	01	00	00	00	01	
86	80	80	80	00	01	60	01	7F	
01	7F	03	82	80	80	80	00	01	
00	06	81	80	80	80	00	00	0A	
9D	80	80	80	00	01	97	80	80	
80	00	00	20	00	41	00	46	04	
40	41	01	0F	0B	20	00	41	01	
6B	10	00	20	00	6C	0B

00	61	73	6D	01	00	00	00	01	
86	80	80	80	00	01	60	01	7F	
01	7F	03	82	80	80	80	00	01	
00	06	81	80	80	80	00	00	0A	
9D	80	80	80	00	01	97	80	80	
80	00	00	20	00	41	00	46	04	
40	41	01	0F	0B	20	00	41	01	
6B	10	00	20	00	6C	0B

00	61	73	6D	01	00	00	00	01	
86	80	80	80	00	01	60	01	7F	
01	7F	03	82	80	80	80	00	01	
00	06	81	80	80	80	00	00	0A	
9D	80	80	80	00	01	97	80	80	
80	00	00	20	00	41	00	46	04	
40	41	01	0F	0B	20	00	41	01	
6B	10	00	20	00	6C	0B

00	61	73	6D	01	00	00	00	01	
86	80	80	80	00	01	60	01	7F	
01	7F	03	82	80	80	80	00	01	
00	06	81	80	80	80	00	00	0A	
9D	80	80	80	00	01	97	80	80	
80	00	00	20	00	41	00	46	04	
40	41	01	0F	0B	20	00	41	01	
6B	10	00	20	00	6C	0B

86	80	80	80	00	01	60	01	7F	
01	7F	03	82	80	80	80	00	01	
00	06	81	80	80	80	00	00	0A	
9D	80	80	80	00	01	97	80	80	
80	00	00	20	00	41	00	46	04	
40	41	01	0F	0B	20	00	41	01	

86	80	80	80	00	01	60	01	7F	
01	7F	03	82	80	80	80	00	01	
00	06	81	80	80	80	00	00	0A	
9D	80	80	80	00	01	97	80	80	
80	00	00	20	00	41	00	46	04	
40	41	01	0F	0B	20	00	41	01	

Jay Phelps | @_jayphelps

Binary can be a little intimidating

Jay Phelps | @_jayphelps

Protip: don't worry about it
(unless of course, you want to)

Jay Phelps | @_jayphelps

Textual representation to the rescue!

Jay Phelps | @_jayphelps

(func	$factorial	(param	$n	i32)	(result	i32)	
		get_local	$n	
		i32.const	0	
		i32.eq	
		if	$if0	
		i32.const	1	
		return	
		end	$if0	
		get_local	$n	
		i32.const	1	
		i32.sub	
		call	$factorial	
		get_local	$n	
		i32.mul	
)

Jay Phelps | @_jayphelps

(func	$factorial	(param	$n	i32)	(result	i32)	
		get_local	$n	
		i32.const	0	
		i32.eq	
		if	$if0	
		i32.const	1	
		return	
		end	$if0	
		get_local	$n	
		i32.const	1	
		i32.sub	
		call	$factorial	
		get_local	$n	
		i32.mul	
)

Jay Phelps | @_jayphelps

WebAssembly is a stack machine language

Jay Phelps | @_jayphelps

stack machine: instructions on a stack

1	+	2

i32.add 0x6a

opcode

01101010

mnemonic

stack

i32.const	1	
i32.const	2	
i32.add

i32.const	1	
i32.const	2	
i32.add

i32.const	1	

stack

1

i32.const	1	
i32.const	2	
i32.add
i32.const	2	

stack

2

1

i32.const	1	
i32.const	2	
i32.addi32.add

stack

1

2

i32.const	1	
i32.const	2	
i32.add

stack

3

i32.add

Jay Phelps | @_jayphelps

call	$log	

i32.const	1	
i32.const	2	
i32.add

Jay Phelps | @_jayphelps

Compilers usually apply optimizations
real-world output is often less understandable to humans

i32.const	1	
i32.const	2	
i32.add	
call	$log	

Jay Phelps | @_jayphelps

i32.const	3	
call	$log	

Jay Phelps | @_jayphelps

Jay Phelps | @_jayphelps

Most tooling supports an Abstract Syntax Tree (AST)
still compiled and evaluated as a stack machine

i32.const	1	
i32.const	2	
i32.add	
call	$log	

Jay Phelps | @_jayphelps

(call	$log	
		(i32.add	
				(i32.const	1)	
				(i32.const	2)	
)	
)

Jay Phelps | @_jayphelps

(call	$log	
		(i32.add	
				(i32.const	1)	
				(i32.const	2)	
)	
)

Jay Phelps | @_jayphelps

s-expressions
Yep, looks like Lisp

Jay Phelps | @_jayphelps

Source map support is coming

Jay Phelps | @_jayphelps

What about memory on the heap?

Jay Phelps | @_jayphelps

A linear memory is a contiguous, byte-
addressable range of memory

Jay Phelps | @_jayphelps

Accessed with instructions like
i32.load and i32.store

Jay Phelps | @_jayphelps

0 1 2 3 4 5 6 7 8 9 10

Jay Phelps | @_jayphelps

0 1 2 3 4 5 6 7 8 9 10

1 byte

Jay Phelps | @_jayphelps

0 1 2 3 4 5 6 7 8 9 10

Jay Phelps | @_jayphelps

0 1 2 3 4 5 6 7 8 9 10

w a s m

Jay Phelps | @_jayphelps

0 1 2 3 4 5 6 7 8 9 10

w a s m

Jay Phelps | @_jayphelps

0 1 2 3 4 5 6 7 8 9 10

119 97 115 109

Jay Phelps | @_jayphelps

How do I get started?

https://mbebenita.github.io/WasmExplorer/

Jay Phelps | @_jayphelps

https://github.com/WebAssembly/wabt

Jay Phelps | @_jayphelps

https://github.com/WebAssembly/binaryen

Jay Phelps | @_jayphelps

Jay Phelps | @_jayphelps

$	emcc	main.c	-s	WASM=1	-o	app.html

Jay Phelps | @_jayphelps

webassembly.org

Jay Phelps | @_jayphelps

Webpack is adding support (!!!)
They received a $125,000 grant from MOSS

Jay Phelps | @_jayphelps

Imagine a cpp-loader / rust-loader

Jay Phelps | @_jayphelps

What's missing?

Jay Phelps | @_jayphelps

Direct access to Web APIs
You have call into JavaScript, right now

Jay Phelps | @_jayphelps

Garbage collection
also necessary for better interop with JavaScript and WebIDL

Jay Phelps | @_jayphelps

Multi-threading

Jay Phelps | @_jayphelps

Browser support?

Jay Phelps | @_jayphelps

The revolution is just beginning

Jay Phelps | @_jayphelps

Jay Phelps | @_jayphelps

Efficient, low-level bytecode for the Web

Jay Phelps | @_jayphelps

Efficient, low-level bytecode for the Web

Jay Phelps | @_jayphelps

Jay Phelps | @_jayphelps

Questions?

 @_jayphelps

Jay Phelps | @_jayphelps

Thanks!

 @_jayphelps

Jay Phelps | @_jayphelps

Jay Phelps | @_jayphelps

Jay Phelps | @_jayphelps

void	log(char	*);	

void	example()	{	
		log("wasm");	
}

(module	
		(import	"env"	"log"	(func	$log	(param	i32)))	
		(memory	$0	1)	
		(data	(i32.const	0)	"wasm\00")	
		(func	$example	
				(call	$log	
						(i32.const	0)	
)	
)	
)	

Jay Phelps | @_jayphelps

(module	
		(import	"env"	"log"	(func	$log	(param	i32)))	
		(memory	$0	1)	

		(func	$example	
				(call	$log	
						(i32.const	0)	
)	
)	
)	

Jay Phelps | @_jayphelps

		(data	(i32.const	0)	"wasm\00")	

(module	
		(import	"env"	"log"	(func	$log	(param	i32)))	
		(memory	$0	1)	
		(data	(i32.const	0)	"wasm\00")	
		(func	$example	

)	
)	

Jay Phelps | @_jayphelps

				(call	$log	
						(i32.const	0)	
)	

