You are viewing content from a past/completed QCon

Presentation: Create a Fair & transparent AI Pipeline with AI Fairness 360

Track: Sponsored Solutions Track II

Location: Marina

Duration: 11:50am - 12:40pm

Day of week: Monday

Share this on:

Abstract

One of the most critical and controversial topics around artificial intelligence centers around bias. As more apps come to market that rely on artificial intelligence, software developers and data scientists can unwittingly (or perhaps even knowingly) inject their personal biases into these solutions.

Because flaws and biases may not be easy to detect without the right tool, we have launched AI Fairness 360, an open source library to help detect and remove bias in machine learning models and data sets.

The AI Fairness 360 Python package includes a comprehensive set of metrics for data sets and models to test for biases, explanations for these metrics, and algorithms to mitigate bias in data sets and models. The research community worked together to create 30 fairness metrics and nine state-of-the-art bias mitigation algorithms.

We will share lessons learned while using AI Fairness 360 and demonstrate how to leverage it to detect and de bias models during pre-processing, in-processing, and post-processing. We will explain how to take these practices and apply them on training in on a more robust environment using Fabric for Deep Learning (FfDL, pronounced “fiddle”) which provides a consistent way to run various scalable deep learning frameworks as a service on Kubernetes.

Speaker: Christian Kadner

Software developer @IBM, committer to Apache Bahir and contributor to Jupyter Enterprise Gateway

Christian Kadner is a software developer at IBM, committer to Apache Bahir and contributor to Jupyter Enterprise Gateway. He has a strong background in Java application development and relational database technology. More recently he has been working with IBM Fabric for Deep Learning and Apache OpenWhisk to develop machine learning pipelines that integrate the IBM Adversarial Robustness Toolbox and the IBM AI Fairness 360 toolkit.

Speaker: Animesh Singh

STSM, AI and Machine Learning @IBM

Animesh Singh is an STSM and lead for IBM Watson and Cloud Platform, currently leading Machine Learning and Deep Learning initiatives on IBM Cloud. He has been with IBM for more than a decade and is currently working with communities and customers to design and implement Deep Learning, Machine Learning and Cloud Computing frameworks. He has been leading cutting edge projects for IBM enterprise customers in Telco, Banking, and Healthcare Industries, around cloud and virtualization technologies. He has a proven track record of driving design and implementation of private and public cloud solutions from concept to production. He also led the design and development first IBM public cloud offering and was the lead architect for Bluemix Local. Find Animesh on Twitter @AnimeshSingh.

Proposed Tracks

  • Practices of DevOps & Lean Thinking

    Practical approaches using DevOps and a lean approach to delivering software.

  • Operationalizing Microservices: Design, Deliver, Operate

    What's the last mile for deploying your service? Learn techniques from the world's most innovative shops on managing and operating Microservices at scale.

  • Developer Experience: Level up your Engineering Effectiveness

    Improving the end to end developer experience - design, dev, test, deploy and operate/understand.

  • Architectures You've Always Wondered About

    Next-gen architectures from the most admired companies in software, such as Netflix, Google, Facebook, Twitter, & more

  • Machine Learning without a PhD

    AI/ML is more approachable than ever. Discover how deep learning and ML is being used in practice. Topics include: TensorFlow, TPUs, Keras, PyTorch & more. No PhD required.

  • Production Readiness: Building Resilient Systems

    Making systems resilient involves people and tech. Learn about strategies being used from chaos testing to distributed systems clustering.

  • Building Predictive Data Pipelines

    From personalized news feeds to engaging experiences that forecast demand: learn how innovators are building predictive systems in modern application development.

  • Modern Languages: The Right Language for the Job

    We're polyglot developers. Learn languages that excel at very specific tasks and remove undifferentiated heavy lifting at the language level.

  • Delivering on the Promise of Containers

    Runtime containers, libraries and services that power microservices.

  • Evolving Java & the JVM

    6 month cadence, cloud-native deployments, scale, Graal, Kotlin, and beyond. Learn how the role of Java and the JVM is evolving.

  • Trust, Safety & Security

    Privacy, confidentiality, safety and security: learning from the frontlines.

  • Beyond the Web: What’s Next for JavaScript

    JavaScript is the language of the web. Latest practices for JavaScript development in and out of the browser topics: react, serverless, npm, performance, & less traditional interfaces.

  • Modern Operating Systems

    Applied, practical & real-world deep-dive into industry adoption of OS, containers and virtualization, including Linux on.

  • Optimizing You: Human Skills for Individuals

    Better teams start with a better self. Learn practical skills for IC.

  • Modern CS in the Real World

    Thoughts pushing software forward, including consensus, CRDT's, formal methods & probabilistic programming.

  • Human Systems: Hacking the Org

    Power of leadership, Engineering Metrics and strategies for shaping the org for velocity.

  • Building High-Performing Teams

    Building, maintaining, and growing a team balanced for skills and aptitudes. Constraint theory, systems thinking, lean, hiring/firing and performance improvement

  • Software Defined Infrastructure: Kubernetes, Service Meshes & Beyond

    Deploying, scaling and managing your services is undifferentiated heavy lifting. Hear stories, learn techniques and dive deep into what it means to code your infrastructure.