You are viewing content from a past/completed QCon

Presentation: Fairness, Transparency, and Privacy in AI @LinkedIn

Track: Applied AI & Machine Learning

Location: Ballroom BC

Duration: 2:55pm - 3:45pm

Day of week: Wednesday

Level: Advanced

Persona: Backend Developer, ML Engineer

Share this on:

This presentation is now available to view on InfoQ.com

Watch video with transcript

Abstract

How do we protect privacy of users in large-scale systems? How do we ensure fairness and transparency when developing machine learned models? With the ongoing explosive growth of AI/ML models and systems, these are some of the ethical and legal challenges encountered by researchers and practitioners alike. In this talk, we will first present an overview of privacy breaches as well as algorithmic bias / discrimination issues observed in the Internet industry over the last few years and the lessons learned, key regulations and laws, and evolution of techniques for achieving privacy and fairness in data-driven systems. We will motivate the need for adopting a "privacy and fairness by design" approach when developing data-driven AI/ML models and systems for different consumer and enterprise applications. We will also focus on the application of privacy-preserving data mining and fairness-aware machine learning techniques in practice, by presenting case studies spanning different LinkedIn applications, and conclude with the key takeaways and open challenges.

Speaker: Krishnaram Kenthapadi

Tech Lead Fairness, Transparency, Explainability & Privacy Efforts @LinkedIn

Krishnaram Kenthapadi is part of the AI team at LinkedIn, where he leads the fairness, transparency, explainability, and privacy modeling efforts across different LinkedIn applications. He also serves as LinkedIn's representative in Microsoft's AI and Ethics in Engineering and Research (AETHER) Committee. He shaped the technical roadmap and led the privacy/modeling efforts for LinkedIn Salary product, and prior to that, served as the relevance lead for the LinkedIn Careers and Talent Solutions Relevance team, which powers search/recommendation products at the intersection of members, recruiters, and career opportunities. Previously, he was a Researcher at Microsoft Research Silicon Valley, where his work resulted in product impact (and Gold Star / Technology Transfer awards), and several publications/patents. He received his Ph.D. in Computer Science from Stanford University in 2006. He serves regularly on the program committees of KDD, WWW, WSDM, and related conferences, and co-chaired the 2014 ACM Symposium on Computing for Development. He received Microsoft's AI/ML conference (MLADS) distinguished contribution award, CIKM best case studies paper award, SODA best student paper award, and WWW best paper award nomination. He has published 35+ papers, with 2500+ citations and filed 130+ patents. He has taught a tutorial on privacy-preserving data mining at KDD 2018, instructed a course on artificial intelligence at Stanford, and given several talks on his research work.

Find Krishnaram Kenthapadi at

Tracks

  • Tech Ethics: The Intersection of Human Welfare & STEM

    What does it mean to be ethical in software? Hear how the discussion is evolving and what is being said in ethics.

  • Optimizing Yourself: Human Skills for Individuals

    Better teams start with a better self. Learn practical skills for IC.

  • Modern Data Architectures

    Today’s systems move huge volumes of data. Hear how places like LinkedIn, Facebook, Uber and more built their systems and learn from their mistakes.

  • Practices of DevOps & Lean Thinking

    Practical approaches using DevOps and a lean approach to delivering software.

  • Microservices Patterns & Practices

    What's the last mile for deploying your service? Learn techniques from the world's most innovative shops on managing and operating Microservices at scale.

  • Bare Knuckle Performance

    Killing latency and getting the most out of your hardware

  • Architectures You've Always Wondered About

    Next-gen architectures from the most admired companies in software, such as Netflix, Google, Facebook, Twitter, & more

  • Machine Learning for Developers

    AI/ML is more approachable than ever. Discover how deep learning and ML is being used in practice. Topics include: TensorFlow, TPUs, Keras, PyTorch & more. No PhD required.

  • Production Readiness: Building Resilient Systems

    Making systems resilient involves people and tech. Learn about strategies being used from chaos testing to distributed systems clustering.

  • Regulation, Risk and Compliance

    With so much uncertainty, how do you bulkhead your organization and technology choices? Learn strategies for dealing with uncertainty.

  • Languages of Infrastructure

    This track explores languages being used to code the infrastructure. Expect practices on toolkits and languages like Cloudformation, Terraform, Python, Go, Rust, Erlang.

  • Building & Scaling High-Performing Teams

    To have a high-performing team, everybody on it has to feel and act like an owner. Organizational health and psychological safety are foundational underpinnings to support ownership.

  • Evolving the JVM

    The JVM continues to evolve. We’ll look at how things are evolving. Covering Kotlin, Clojure, Java, OpenJDK, and Graal. Expect polyglot, multi-VM, performance, and more.

  • Trust, Safety & Security

    Privacy, confidentiality, safety and security: learning from the frontlines.

  • JavaScript & Transpiler/WebAssembly Track

    JavaScript is the language of the web. Latest practices for JavaScript development in and how transpilers are affecting the way we work. We’ll also look at the work being done with WebAssembly.

  • Living on the Edge: The World of Edge Compute From Device to Application Edge

    Applied, practical & real-world deep-dive into industry adoption of OS, containers and virtualization, including Linux on.

  • Software Supply Chain

    Securing the container image supply chain (containers + orchestration + security + DevOps).

  • Modern CS in the Real World

    Thoughts pushing software forward, including consensus, CRDT's, formal methods & probabilistic programming.