
Building
RESTful Web Services

with
Erlang and Yaws

Steve Vinoski
Member of Technical Staff

Verivue, Inc., Westford, MA USA
http://steve.vinoski.net/

QCon San Francisco
20 November 2008

http://steve.vinoski.net
http://steve.vinoski.net

Erlang

Functional
programming
language created in
1986 at Ericsson

Focuses on long-
running, concurrent,
distributed, highly
reliable systems

Small language that
enables big
productivity

Yaws
“Yet Another Web Server” implemented
starting in early 2002 by Claes “Klacke”
Wikström, long-time Erlang expert

Perhaps best known outside the Erlang
community for the “Apache vs. Yaws” graphs

Excellent for serving dynamic content

Can run stand-alone or embedded within a
larger Erlang application

http://yaws.hyber.org/

http://yaws.hyber.org
http://yaws.hyber.org

Apache vs. Yaws

Yaws (in red) vs.
Apache (green and
blue)

X axis: number of
connections

Y axis: throughput
(kB/sec)

Find details of the experiment at
http://www.sics.se/~joe/apachevsyaws.html

http://www.sics.se/~joe/apachevsyaws.html
http://www.sics.se/~joe/apachevsyaws.html

Topics

Trying to cover Erlang, Yaws, and REST in
depth in an hour doesn’t work (I’ve tried)

Instead:

explain general Yaws capabilities

cover several areas to focus on when
building RESTful web services

describe how to implement each of those
areas using Yaws and Erlang

Yaws Dynamic
Content

One way is to embed Erlang code in
<erl> ... </erl> tags in your HTML
<html>
 <body>
 <p>
 <erl>
 out(Arg) ->
 {html, "Hello, World!"}.
 </erl>
 </p>
 </body>
<html>

Place this into a “.yaws” file and Yaws calls “out”
which generates HTML to replace <erl> ... </erl>

“Out” Functions
Yaws calls application “out” functions in
various contexts to produce dynamic content

written as “out/1” in Erlang notation, since
“out” takes 1 argument

The argument to “out” is an “arg” record

supplies access to all details of the incoming
request — URI, methods, HTTP headers, etc.

Depending on the calling context, out/1
returns either part or all of the response

Ehtml

Returning HTML-formatted strings from out/1
is painful

embedded tags can get messy

Yaws provides ehtml as a better alternative

essentially HTML in Erlang syntax

Tuple consisting of the atom ehtml and a
list of HTML elements

Ehtml Example
{ehtml, list-of-tags}

list-of-tags:
[{html-tag, list-of-attributes,
list-of-values}]

Rewrite the previous <erl> ... </erl> example:
<erl>
out(Arg) ->
 {ehtml,
 [{html,[],
 [{body,[],
 [{p,[],"Hello, World!"}]}]}]}.
</erl>

Appmods

A Yaws appmod (“application module”) is an
Erlang module that:

exports an out/1 function

is tied into one or more URI paths

When it encounters a path element with an
associated appmod, Yaws calls the appmod
out/1 function to process the rest of the URI

Appmods are specified in the Yaws config file

Appmod Example

First set the appmod configuration in yaws.conf:
<server test>
 port = 8000
 listen = 127.0.0.1
 docroot = /usr/local/var/yaws/www
 appmods = <foo, foo>
</server>

Appmod foo

-module(foo).
-export([out/1]).
-include("yaws_api.hrl").

out(Arg) ->
 {ehtml,
 [{html, [],
 [{body, [],
 [{h1, [], "Appmod Data"},
 {p, [],
 yaws_api:f("appmoddata = ~s",
 [Arg#arg.appmoddata])},
 {p, [],
 yaws_api:f("appmod_prepath = ~s",
 [Arg#arg.appmod_prepath])}]}]}]}.

Invoking appmod foo
Results of running
curl http://localhost:8000/tmp/foo/bar/baz/
<html>
 <body>
 <h1>Appmod Data</h1>
 <p>appmoddata = bar/baz/</p>
 <p>appmod_prepath = /tmp/</p>
 </body>
</html>

Appmod prepath is /tmp/, appmod data is
bar/baz/

Could also access the rest of Arg to get query

Yapps
Yapps — “yaws applications”

Makes use of full Erlang/OTP application design
principles for supervision, auto-restart, etc.

Yapps reside in the same Erlang VM instance with the
Yaws application

Yapps are tied to URIs like appmods, and they also have
appmods under them

appmod: just a module

yapp: application comprising multiple modules, some
of which are appmods

Yapp Framework

The Yapp application itself is an optional framework
under Yaws which manages user yapps

By default it persistently stores registrations for user
yapps in mnesia (Erlang’s distributed fault-tolerant
datastore)

easy to replace the mnesia default (e.g., I use an in-
memory registry with boostrapped yapps)

For details on installing and using yapps, see
http://yaws.hyber.org/yapp_intro.yaws

http://yaws.hyber.org/yapp_intro.yaws
http://yaws.hyber.org/yapp_intro.yaws

Focus Areas for
RESTful Services

Resources and identifiers

Representations and media types

Hypermedia and linking

HTTP Methods

Conditional GET

Dealing with URIs

Some advise spending time designing “nice”
URIs, some argue against it

Arguments against say it doesn’t matter
because with proper use of hypermedia,
clients don’t care

But I argue for good URI design because it
affects your server implementation

We’ve seen how appmods and yapps allow us
to take over URI processing

Sidebar: Erlang
Pattern Matching

Erlang allows you to overload functions based
on matching function arity and argument
values

For example, in raising a value N to a power
M, we end the recursion with a version of the
pow/3 function for which M == 0:
pow(N, M) -> pow(N, M, 1).

pow(_N, 0, Total) -> Total;

pow(N, M, Total) ->
 pow(N, M-1, Total*N).

Handling URIs with
Pattern Matching

Consider this out/1 function:
out(Arg) ->
 Uri = yaws_api:request_url(Arg),
 Uri_path = Uri#url.path,
 Path = string:tokens(Uri_path, "/"),
 out(Arg, Uri, Path).

Breaks the target URI path into a list of path
elements

Invokes a different function, out/3, with more
detail and returns its result

pass Arg and Uri for further access in called
function

Handling URIs with
Pattern Matching

out/3 might look like this:
out(Arg, Uri, ["order"]) ->
 %% handles path order/;

out(Arg, Uri, ["order", Order_id]) ->
 %% handles path order/{order_id}/;

out(Arg, Uri, ["customer", Cust_id]) ->
 %% handles path customer/{cust_id}/

out(_Arg, _Uri, _Path) ->
 {status, 404}.

Pattern-matching the URI path list lets us
dispatch to specific handlers for each URI path

Designing URIs

So, yes, I would argue that you do want to
design your URIs well if possible

Doing so allows you to make use of Erlang’s
pattern-matching feature to assist with URI
processing and dispatching

Can be combined with appmods as necessary
to split processing and dispatching across
different modules

Focus Areas for
RESTful Services

Resources and identifiers

Representations and media types

Hypermedia and linking

HTTP Methods

Conditional GET

Representations and
Media Types

Each resource can have one or more
representations

Representation types are indicated by MIME
types in the Content-type HTTP header

Clients can negotiate content types by sending
preferred types in Accept headers

preferences can be indicated using quality
(“q”) parameters

Example Accept
Headers

Safari 3.2:
text/xml,application/xml,application/xhtml+xml,text/
html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

Firefox 3.0.4:
text/html,application/xhtml+xml,application/
xml;q=0.9,*/*;q=0.8

IE 7.0.5730.13:
image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
application/x-shockwave-flash, application/vnd.ms-
excel, application/vnd.ms-powerpoint, application/
msword, */*

curl: */*

Service Clients and
Accept Headers*

As we can see, browser Accept headers tend to
be long strings that contain so many options
they’re almost meaningless

Web service client Accept headers are not like
this

they tend to either ask for exactly what they
want...

...or they don’t send an Accept header at all

* this slide was added after the QCon presentation based on feedback from Mark Nottingham

Parsing That Mess
If your service handles both browser clients and
service clients, you have to handle Accept

A few years ago Joe Gregorio wrote mimeparse
in Python to parse these header values

http://www.xml.com/pub/a/2005/06/08/restful.html

I recently ported it to Erlang, available here:

http://code.google.com/p/mimeparse/

Also available in Ruby and PHP, same location

http://www.xml.com/pub/a/2005/06/08/restful.html
http://www.xml.com/pub/a/2005/06/08/restful.html
http://code.google.com/p/mimeparse/
http://code.google.com/p/mimeparse/

Using mimeparse

For each resource, decide which MIME type(s)
you want to support

Pass a list of those types and the Accept header
to mimeparse:best_match/2:
Want = ["application/json", "text/html"],
Accept = (A#arg.headers)#headers.accept,
Best = mimeparse:best_match(Want, Accept)

Handles quality parameters, etc.

Returns empty list if no match

Dealing with
MIME Types

For the requested resource, determine the
representation type the client wants

if there’s no Accept header then choose a
default

if there’s an Accept header but no match
with what you support, return HTTP status
406 (“Not Acceptable”)

Use pattern matching again to dispatch to the
right handler

MIME Type
Dispatching

Change our out/3 function to out/4, adding
the MIME type:
out(Arg,Uri,"text/html",["order"]) ->
 %% handles HTML repr for path order/;

out(Arg,Uri,"application/atom+xml",
 ["order"]) ->
 %% handles Atom repr for path order/;

out(_Arg, _Uri,_Other, ["order"]) ->
 {status, 406}.

Handling Common
Representations

Various packages allow you to natively handle common
service resource representations in Erlang

JSON:

Yaws supplies a json module

Mochiweb (another Erlang web framework) supplies
mochijson and mochijson2

XML:

xmerl, part of the Erlang system

erlsom, more modern and faster than xmerl

Returning Content

To return content from your service, just return
a “content” tuple from your out/1 function:
out(Arg,Uri,"application/json",Path) ->
 Json = {struct, [{name, "Steve Vinoski"},
 {company, "Verivue"}]},
 Data = json:encode(Json),
 {content, "application/json", Data}.

Sets the Content-type HTTP header to the
MIME type you supply as the second tuple
element

Supporting Multiple
Representations

Resources can have multiple representations

Return the appropriate content type from each of your
out/4 functions for that resource

But set the Vary header to alert intermediaries of how
the representation varies

You can return HTTP status, headers, and content all at
once like this:
out(Arg,Uri,"application/json",Path) ->
 Json = {struct, [{name, "Steve Vinoski"},
 {company, "Verivue"}]},
 Data = json:encode(Json),
 [{status, 200},
 {header, {"Vary", "Accept"}},
 {content, "application/json", Data}].

Representations and
Hypermedia

A critical REST constraint is “hypermedia as the
engine of application state” (HATEOAS)

Representations provide URIs to further resources
to drive clients through their application state

This works only if the client understands that
something in the representation is a URI

Common repr types like application/xml and
application/json alone do not support HATEOAS!

XLink helps XML, and JSON making progress, see
http://json-schema.org/

http://json-schema.org/
http://json-schema.org/

Focus Areas for
RESTful Services

Resources and identifiers

Representations and media types

Hypermedia and linking

HTTP Methods

Conditional GET

Handling the HTTP
Method

For each resource, decide which HTTP
methods it supports

GET, PUT, POST, DELETE, OPTIONS, HEAD

You get the method for a given request from
the http_request record via the Arg record:
Method = (Arg#arg.req)#http_request.method

If a client invokes an unsupported method on a
resource, return HTTP status 405 (“Method
Not Allowed”)

Dispatching
HTTP Methods

You guessed it: more pattern matching

Change our out/4 function to out/5, adding
the HTTP method:
out(Arg,Uri,'GET',
 "text/html",["order"]) ->
 %% handles GET HTML repr for order/;

out(Arg,Uri,'POST',
 "text/html",["order"]) ->
 %% handles POST HTML repr for order/;

Retrieving Query and
POST Data

yaws_api:parse_post(Arg) returns a property
list of name,value POST data pairs

yaws_api:postvar(Arg, Name) looks up Name
in POST data

yaws_api:parse_query(Arg) returns a property
list of name,value query string pairs

yaws_api:queryvar(Arg, Name) looks up
Name in the query string

Focus Areas for
RESTful Services

Resources and identifiers

Representations and media types

Hypermedia and linking

HTTP Methods

Conditional GET

Conditional GET

Conditional GET and caching are critical to
web scalability

Read Mark Nottingham’s excellent “Caching
Tutorial for Web Authors and Webmasters” for
details (http://www.mnot.net/cache_docs/)

Read Richardson’s and Ruby’s RESTful Web
Services to learn about conditional GET

http://www.mnot.net/cache_docs/
http://www.mnot.net/cache_docs/

Conditional GET
Return Headers

Outgoing: set HTTP Etag and Last-modified
headers

Etag is a hash-like string that uniquely identifies
a representation

Last-modified is the date string of the resource’s
most recent modification

Set these like any other header, using a header
tuple as part of your out/5 return value:
[{header, {"Etag", Etag_value}},
 {header, {"Last-modified", Last_mod_val}}]

Conditional GET
Incoming Headers
To perform a conditional GET, client will send:

Last-modified value back in the If-modified-
since header

Etag value back in the If-none-match header

or both, but Etag takes precedence

Your code needs to look for these and handle
them appropriately

Conditional GET
Incoming Headers
For incoming Etag values, if one matches the
requested representation’s Etag...

...or for incoming modification dates, if the
resource hasn’t changed since that date...

...then your service should return status 304
(“Not Modified”)

This avoids creating potentially expensive-to-
create representations and avoids returning
potentially large representations

Development
Concerns

Yaws is very stable and robust

uses Erlang/OTP supervision and
monitoring capabilities, and can auto-restart
if any problems arise

Provides interactive mode with debug output
for tracking down issues with your code

Full power of Erlang/OTP under it, so you can
load new code on the fly for your yapps and
appmods

Yaws Community
Documentation and downloads available at
http://yaws.hyber.org/

Code is on sourceforge:
http://sourceforge.net/projects/erlyaws

Find the erlyaws mailing list there as well

Since code is very stable, doesn’t change much

I recently added better support for the HTTP
OPTIONS method

Current projects Klacke and I are working on: adding
sendfile linked-in driver support, and general testing

http://yaws.hyber.org
http://yaws.hyber.org
http://sourceforge.net/projects/erlyaws
http://sourceforge.net/projects/erlyaws

But Wait,
There’s More

but not today :-)

Read the Yaws documentation, lots there to
discover

Any final questions?

