

Dale Schumacher
twitter: @dalnefre

QCon/SF 2010-11

Actor Thinking

Conway's Law

“... organizations which design systems … are
constrained to produce designs which are
copies of the communication structures of

these organizations.”

–M. Conway (1968)

Models of Computation

ObjectsObjects ActorsActors

ProceduresProcedures FunctionsFunctions

DataflowDataflow LogicLogic

Sequential Stack Machine

JZ +6IP

ROLL -3

ADD

SWAP

DEC

JMP -5

6SP

1

2

3

5

8

POP 13

Linked Stack Machine
ZERO?

IP

ROLL -3

ADD

SWAP

DEC

5

SP

1

2

3

5

8POP

“Hewitt had noted that the actor model could
capture the salient aspects of the lambda
calculus; Scheme demonstrated that the

lambda calculus captured nearly all salient
aspects (excepting only side effects and
synchronization) of the actor model.”

–G. Steele and R. Gabriel (1993)

Actors and Functions

Objects (Kay) & Actors (Hewitt)

● Everything is an object
● Objects communicate

by sending and
receiving messages

● Objects have their own
memory

● Inheritance?
Polymorphism?

● Configuration =
actors + messages

● Actors respond to
messages by:

 Sending messages
 Creating actors
 Changing behavior

● Everything is concurrent

It's all about the messages

ObjectsObjects ActorsActors

Messages

http://www.flickr.com/photos/sunface13/4815937062/

build(4)

ring

ring_link

build(0)

build(1) build(2)

build(3)

LET ring_builder(n) = λ(first, m).[
CASE n OF
0 : [

BECOME λm.[# ring_last(first)
CASE m OF
0 : [BECOME λ_.[]]
_ : [SEND dec(m) TO first]
END

]
SEND m TO first

]
_ : [

CREATE next WITH ring_builder(dec(n))
SEND (first, m) TO next
BECOME λm.[# ring_link(next)

SEND m TO next
]

]
END

]
CREATE ring WITH ring_builder(4)
SEND (ring, 3) TO ring

ring_linkring_last

ring_linkring_link

next

next

next

next

first (ring, 3)

(ring, 3)

(ring, 3)

(ring, 3)

(ring, 3)

3

3

3

3

LET ring_builder(n) = λ(first, m).[
CASE n OF
0 : [

BECOME λm.[# ring_last(first)
CASE m OF
0 : [BECOME λ_.[]]
_ : [SEND dec(m) TO first]
END

]
SEND m TO first

]
_ : [

CREATE next WITH ring_builder(dec(n))
SEND (first, m) TO next
BECOME λm.[# ring_link(next)

SEND m TO next
]

]
END

]
CREATE ring WITH ring_builder(4)
SEND (ring, 3) TO ring

ring_link

ring_linkring_last

ring_linkring_link

ring

next

next

next

next

first

2

2

2

2

2

1

1

1

1

1

0

0

0

0

0

3

λ_.[]

service protocol: (cust, {#create, #read, #update, #delete}, key[, value])

LET read_only_proxy_beh(service) = λ(cust, req).[
CASE req OF
(#read, key) : [SEND (cust, req) TO service]
_ : [SEND ? TO cust]
END

]

LET revocable_delete_proxy_beh(service, owner) = λ(cust, req).[
CASE req OF
(#delete, key) : [SEND (cust, req) TO service]
(#revoke, $owner) : [SEND #revoked TO cust]
_ : [SEND ? TO cust]
END
BECOME λ(cust, _).[SEND ? TO cust]

]

Object-Capability Security

proxy service

proxy service

owner

Lifetimes vary dramatically

CREATE empty_grammar WITH λ(cust, #match, src).[
SEND (TRUE, NIL, src) TO cust

]
LET symbol_grammar_beh(symbol) = λ(cust, #match, src).[

SEND (k_symbol, #read) TO src
CREATE k_symbol WITH λ(token, next).[

CASE token OF
$symbol : [SEND (TRUE, token, next) TO cust]
_ : [SEND (FALSE, src) TO cust]
END

]
]
LET alt_grammar_beh(first, rest) = λ(cust, #match, src).[

SEND (k_alt, #match, src) TO first
CREATE k_alt WITH λmatch.[

CASE match OF
(TRUE, _) : [SEND match TO cust]
_ : [SEND (cust, #match, src) TO rest]
END

]
]

symbol

k_symbol

k_alt

...

alt

...

first

rest

empty

LET seq_grammar_beh(first, rest) = λ(cust, #match, src).[
SEND (k_seq, #match, src) TO first
CREATE k_seq WITH λmatch.[

CASE match OF
(TRUE, token, next) : [

SEND (SELF, #match, next) TO rest
BECOME λmatch'.[

CASE match' OF
(TRUE, token', next') : [

SEND (TRUE, (token, token'), next')
TO cust

]
_ : [SEND (FALSE, src) TO cust]
END

]
]
_ : [SEND (FALSE, src) TO cust]
END

]
]

k_seq

...

seq

...

first

rest

k_seq'

LET opt_grammar_beh(grammar) = λmsg.[# opt ::= <grammar> | <empty>;
BECOME alt_grammar_beh(

grammar,
empty_grammar

)
SEND msg TO SELF

]
LET star_grammar_beh(grammar) = λmsg.[# star ::= <grammar> <star> | <empty>;

BECOME seq_grammar_beh(
NEW seq_grammar_beh(grammar, SELF),
empty_grammar

)
SEND msg TO SELF

]
LET plus_grammar_beh(grammar) = λmsg.[# plus ::= <grammar> <grammar>*;

BECOME seq_grammar_beh(
grammar,
NEW star_grammar_beh(grammar)

)
SEND msg TO SELF

]

grammar

alt

empty

first

rest

seq

seq

empty

grammar

first
first

rest

rest

grammar

seq

star(...)

first

rest

expr ::= <const>
| <ident>
| 'λ' <ident> '.' <expr>
| <expr> '(' <expr> ')';

Un-typed Lambda Calculus

CREATE empty_env WITH λ(cust, _).[SEND ? TO cust]
LET env_beh(ident, value, next) = λ(cust, ident').[

IF $ident' = $ident [SEND value TO cust] ELSE [SEND (cust, ident') TO next]
]
LET const_expr_beh(value) = λ(cust, #eval, _).[SEND value TO cust]
LET ident_expr_beh(ident) = λ(cust, #eval, env).[SEND (cust, ident) TO env]
LET abs_expr_beh(ident, body_expr) = λ(cust, #eval, env).[

CREATE closure WITH λ(cust, #apply, arg).[
CREATE env' WITH env_beh(ident, arg, env)
SEND (cust, #eval, env') TO body_expr

]
SEND closure TO cust

]
LET app_expr_beh(abs_expr, arg_expr) = λ(cust, #eval, env).[

SEND (k_abs, #eval, env) TO abs_expr
CREATE k_abs WITH λabs.[

SEND (k_arg, #eval, env) TO arg_expr
CREATE k_arg WITH λarg.[

SEND (cust, #apply, arg) TO abs
]

]
]

Evaluating (λx.x)(42)

Open Systems

● Continuous Change and Evolution
● Decentralized Decision-Making

– Absence of Bottlenecks

– Arms-length Relationships
● Perpetual Inconsistency
● Negotiation Among Components

–C. Hewitt and P. de Jong (1983)

References
● It's Actors All The Way Down <http://dalnefre.com/>

● C. Hewitt. Viewing Control Structures as Patterns of Passing
Messages. Journal of Artificial Intelligence, 8(3), 1977.

● G. Agha. Actors: A Model of Concurrent Computation in
Distributed Systems. MIT Press, Cambridge, MA, 1986.

● C. Hewitt, H. Lieberman. Design Issues in Parallel Architectures
for Artificial Intelligence. AI Memo 750, MIT AI Lab, 1983.

● G. Agha, I. Mason, S. Smith, and C. Talcott. A Foundation for
Actor Computation. Journal of Functional Programming, Vol. 7,
No. 1, January 1997.

http://dalnefre.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

