
TM

abstractions at scale
our experiences at twitter

marius a. eriksen
@marius
QConSF, November 2010

Sunday, November 14, 2010

twitter
‣ real-time information network

‣ 70M tweets/day (800/s)

‣ 150M users

‣ 70k API calls/s

Sunday, November 14, 2010

agenda
‣ scale & scalability

‣ the role of abstraction

‣ good abstractions, bad abstractions

‣ abstractions & scale

‣ examples

‣ “just right” APIs

‣ conclusions

Sunday, November 14, 2010

scale & scalability

“Scalability is a desirable property of a system, a
network, or a process, which indicates its ability to
either handle growing amounts of work in a
graceful manner or to be readily enlarged”

(Wikipedia)

Sunday, November 14, 2010

scale & scalability (cont’d)

‣ only “horizontal” scaling allows unbounded
growth

‣ not entirely true: eg. due to network effects

‣ not a panacea

‣ “vertical” scaling is often desirable & required

‣ contain costs

‣ curtail network effects

Sunday, November 14, 2010

scale & scalability (cont’d)
‣ the target architecture is the datacenter

‣ network is a critical component

‣ deeper storage hierarchy

‣ higher performance variance

‣ complex failure modes

‣ but our programming models don’t account
for these resource & failure models explicitly

Sunday, November 14, 2010

abstraction

“freedom from representational qualities”

‣ the chief purpose of abstraction is to manage
complexity & provide composability

‣ in software, abstraction is manifested through
common interfaces

‣ explicit semantics

‣ implicit “contracts”

Sunday, November 14, 2010

abstraction (cont’d)

‣ as systems become more complex, abstraction
becomes increasingly important

‣ especially as number of engineers grow

‣ modern systems are highly complex and are
highly abstracted

Sunday, November 14, 2010

type systems
‣ [static] type systems can encode some of the

contracts for us

‣ giving us static guarantees

‣ academia is pushing the envelope here with
dependent types

‣ they also compose

‣ the line between type & program becomes
blurred

Sunday, November 14, 2010

good abstraction? your CPU
‣ x86-64 is a spec

‣ you don’t care if it’s provided by AMD or Intel

‣ excepting a few compiler & OS authors, most of
you don’t think about

‣ pipelining

‣ out of order & speculative execution

‣ branch prediction

‣ cache coherency

‣ etc…

Sunday, November 14, 2010

good …? your memory hierarchy
‣ you don’t interface with it directly

‣ purist view: addressable memory cells

‣ reality: has scary-good optimizations for
common access patterns. highly optimized.

‣ you don’t think (often) about:

‣ cache locality

‣ TLB effects

‣ MMU ops scheduling

Sunday, November 14, 2010

bad abstraction? ia64
‣ (at least initially) compilers couldn’t live up to it

‣ hardware promise was delegated to the
compiler

‣ compilers failed to reliably produce sufficiently
fast code

‣ abstraction was broken

‣ good for certain scientific computing domains

Sunday, November 14, 2010

a lens
‣ scaling issues occur when abstractions become

leaky

‣ RDBMS fails to perform sophisticated queries
on highly normalized data

‣ your GC thrashes after a certain allocation
volume

‣ OS thread scheduling becomes unviable after
N × 1000 threads are created

Sunday, November 14, 2010

¶ threads
‣ threads offer a familiar and linear model of execution

‣ scheduling overhead becomes important after a
certain amount of parallelism

‣ stack allocation can become troublesome

‣ fails to be explicit about latency, backpressure

‣ alternative: asynchronous programming

‣ makes queuing, latency explicit

‣ allows SEDA-style control

‣ a compromise? LWT

Sunday, November 14, 2010

¶ sequence abstractions
‣ produces concise, beautiful, composable code

‣ access patterns aren’t propagated down the
stack

‣ missed optimizations

trait Places extends Seq[Place]

places.chunks(5000).map(_.toList).parForeach { chunk =>

 …

}

Sunday, November 14, 2010

¶ RDBMS
‣ are [by definition] generic

‣ encourage normalized data storage

‣ very powerful data model

‣ little need to know access patterns a priori

‣ provide general (magical) querying mechanics

‣ bag of tricks: query planning, table statistics,
covering indices

Sunday, November 14, 2010

¶ RDBMS
‣ at scale, the most viable strategy is: What You

Serve Is What You Store (WYSIWYS)

‣ or at least very close

‣ this brings about a whole host of new problems

‣ data (in)consistency

‣ multiple indices

‣ “re-normalization”

Sunday, November 14, 2010

¶ RDBMS
‣ at-scale, querying is highly predictable, most of

the time:

‣ don’t need fancy query planning

‣ don’t need statistics

‣ in fact, we know a-priori how to efficiently query
the underlying datastructures

‣ wish: don’t give me a query engine, give me
primitives!

‣ maybe there’s a “just right” API here

Sunday, November 14, 2010

¶ in-memory representations
‣ having tight control over representation is often

crucial to resource utilization

‣ [space vs. time] memory bandwidth is
precious, CPU is plentiful

‣ cache locality can often make an enormous
difference — even to the point of less code is
better than more efficient code(!)

‣ at odds with modern GC’d languages automatic
memory management & layout

Sunday, November 14, 2010

¶ in-memory representations
‣ optimize memory layout

‣ pack data

‣ compression

‣ varint, difference, zigzag, etc.

‣ L1:main memory latency ≈ 1:200 (!)

‣ example: geometry of Canada ~ jts normalized,
vs. WKB

‣ wkb is ≈ 600 KB, JTS representation ≈ 2-3MB

Sunday, November 14, 2010

¶ garbage collection
‣ we love garbage collection

‣ attempts to encode common patterns:
generational hypothesis

‣ not always quite right

‣ the application almost always has some idea
about object lifetime & semantics

‣ proposal: talk to each other!

‣ backpressure, thresholding, application-guided
GC

Sunday, November 14, 2010

¶ virtual memory

“You’re Doing it Wrong”

Poul-Henning Kamp, ACM Queue, June 2010

"… Varnish does not ignore the fact that memory is virtual;
it actively exploits it”

Sunday, November 14, 2010

¶ virtual memory

‣ maybe he is doing it wrong?

‣ varnish uses data structures designed to
anticipate virtual memory layout & behavior

‣ translates application semantics (eg. LRU)

‣ instead, you could have direct control over those
resources

Sunday, November 14, 2010

“just right” abstractions
‣ high level abstractions are absolutely necessary

to deal with today’s complex systems

‣ but providing good abstractions is hard

‣ what are the “just right” abstractions?

‣ exploit common patterns

‣ give enough degrees of freedom to the
underlying platform

‣ usually target a narrow(er) domain

‣ retain high level interfaces

Sunday, November 14, 2010

¶ mapreduce

def map(datum):
 words = {}
 for word in parse_words(datum):
 word[word] += 1
 for (word, count) in words.items():
 output(word, count)

def reduce(key, values):
 output(key, mean(values))

‣ much freedom is given to the scheduler

‣ exploits data locality (predictably)

Sunday, November 14, 2010

¶ shared-nothing web apps

def handle(request):
 return Response(
 “hello %s!” % request.get_user())

‣ eg: google’s app engine, django, rails, etc

Sunday, November 14, 2010

¶ bigtable
‣ very simple data model

‣ but composable — effectively every other
database squeezes (more) sophisticated data
models down to 1 dimensional storage(s)

‣ explicit memory hierarchy (pinning column
families to memory)

‣ provides load balancer/scheduler much freedom

‣ only magic: compactions. challenge: resource
isolation.

Sunday, November 14, 2010

¶ LWT

lwt ai = Lwt_lib.getaddrinfo
 "localhost" "8080"
 [Unix.AI_FAMILY Unix.PF_INET;
 Unix.AI_SOCKTYPE Unix.SOCK_STREAM] in

lwt (input, output) =
 match ai with
 | [] -> fail Not_found
 | a :: _ -> Lwt_io.open_connection
 a.Unix.ai_addr in

Lwt_io.write output "GET / HTTP/1.1\r\n\r\n" >>
Lwt_io.read input

Sunday, November 14, 2010

theme
‣ provide a programming model that provide a

narrow (but flexible) interface to resources

‣ mapreduce

‣ shared-nothing web apps

‣ provide a programming model that make
resources explicit

‣ bigtable

‣ LWT

Sunday, November 14, 2010

meta pattern(s)

‣ addressing separation of concerns:

‣ (asynchronous) execution policy vs.
(synchronous) application logic

‣ data locality vs. data operations

‣ data model vs. data distribution

‣ data locality vs. data model

Sunday, November 14, 2010

the future?
‣ database systems

‣ search systems

‣ ... or any online query system?

‣ some academic work already in this area:

‣ OPIS (distributed arrows w/ combinators)

‣ ypnos (grid compiler)

‣ skywriting (scripted dataflow)

Sunday, November 14, 2010

conclusions
‣ we need high level abstractions

‣ they are simply necessary

‣ allows us to develop faster and safer

‣ many high level abstractions aren’t “just right”

‣ can become highly inoptimal (often orders of
magnitudes can be reclaimed)

‣ some systems do provide good compromises

‣ makes resources explicit

‣ the future is exciting!

Sunday, November 14, 2010

that’s it!

‣ follow me: @marius

‣ marius@twitter.com

Sunday, November 14, 2010

mailto:marius@twitter.com
mailto:marius@twitter.com

