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the plan

2

modeling the world

total control model

concurrency and parallelism

an approach
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time
when things happen

before/after

later

concurrency

now

relative
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identity
continuity over time

built by minds

sameness across a series of perceptions

not a name, but can be named

can be composite
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perception
becoming aware via the senses

uncoordinated

provides values (snapshots)

contemplate values for as long as you like
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values
units of perception

points in time of identities

immutable

possibly composite
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action
change to identity(ies) over time

independent of other perceivers

makes new values available to perceivers

many possible semantics

might be coordinated
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total control model
global, total control

one processor

one memory

anything else is deep voodoo

roll-your-own time model
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difficulties with
rolling your own
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time present unreliable, past nonexistent

identity locking + convention

perception ad hoc (copying?)

values class-level convention?

action side effects everywhere
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the problems
with convention
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add concurrency
 and parallelism to 

the mix
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http://ghcmutterings.wordpress.com/2009/10/06/parallelism-concurrency/

“where did this dangerous 
assumption that 
Parallelism == 

Concurrency come from?” 
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we need to switch 
mental models
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Clojure’s
approach
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syntax
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atomic data types
type example java equivalent
string "foo" String

character \f Character

regex #"fo*" Pattern

integer 42 Long

a.r. integer 42N BigInteger

double 3.14159 Double

a.p. double 3.14159M BigDecimal

boolean true Boolean

nil  nil null

ratio 22/7 N/A

symbol  foo, + N/A

keyword :foo, ::foo N/A
16
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data literals

type properties example

list singly-linked,
insert at front (1 2 3)

vector indexed,
insert at rear [1 2 3]

map key/value
{:a 100
 :b 90}

set key #{:a :b}
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(println "Hello World")

function call

fn call argsemantics:

structure: symbol string

list
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(defn greet
  "Returns a friendly greeting"
  [your-name]
  (str "Hello, " your-name))

function definition

define a fn fn name
docstring

arguments

fn body
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(defn greet
  "Returns a friendly greeting"
  [your-name]
  (str "Hello, " your-name))

it's all data

symbol symbol
string

vector

list
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(defn ^String greet
  "Returns a friendly greeting"
  [your-name]
  (str "Hello, " your-name))

metadata

prefix with ^ class name or
arbitrary map
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values
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persistent data structures
immutable

“change” by function application

maintain performance guarantees

full-fidelity old versions
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persistent example:
linked list

tigerrabbitternnewt

“my” list
“your” 

list
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bit-partitioned tries

“your” 
trie

“my”
trie

25

25Friday, November 5, 2010



32-way tries

... ... ... ... ... ...

... ...

... ......

... ......
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identities
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refs

ref value

ref value

value

explicit semantic

state
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life with variables

variable

???

variable

???

?
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perceptions
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v1

F

v2

F

v3

F

v4

Process events 
(pure functions)

Observers/perception/memory

States 
(immutable values)Identity 

(succession of 
states)

Epochal Time Model

31

31Friday, November 5, 2010



actions
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(change-state ref fn [args*])

fn gets current state of ref

fn return becomes next state of ref

snapshot always available

no user locking

no deadlocks

writers never impede readers

unified update model
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unified update

;refs
(dosync 
  (alter foo  assoc :a "lucy"))

;agents
(send foo assoc :a "lucy")

;atoms
(swap! foo assoc :a "lucy")

34

34Friday, November 5, 2010



atoms

35
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• 1:1 timeline/identity

• Atomic state succession

• Point-in-time value 
perception

F

v2

F

v3

F

v4

vN+1

vNs

vN

AtomicReference

(swap! an-atom f args)

(f vN args) becomes vN+1

- can automate spin

cas as time construct
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http://blog.bestinclass.dk/index.php/2009/10/brians-functional-brain/
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(defn new-board
  "Create a new board with about half the cells set    
   to :on."
  ([] (apply new-board dim-board))
  ([dim-x dim-y]
     (for [x (range dim-x)]
       (for [y (range dim-y)]
         (if (< 50 (rand-int 100)) :on :off))))))

board is just a value

distinct bodies by arity
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(defn step
  "Advance the automation by one step, updating all    
   cells."
  [board]
  (doall
   (map (fn [window]
          (apply #(doall (apply map rules %&))
                 (doall (map torus-window window))))
        (torus-window board))))

update is just a function

rules

cursor over previous, me, next
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(let [stage (atom (new-board))]
  ...)

(defn update-stage
  "Update the automaton."
  [stage]
  (swap! stage step))

state is trivial

identity initial value

apply a fn update fn
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software
transactional

memory
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F

v1 v2 v3 v4

v1 v2 v3 v4

v1 v2 v3 v4

v1 v2 v3 v4

F

F

F

F

F

F

F F F

F

F

Transactions

stm as time construct
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(def messages (ref []))

ref example: chat

identity

initial value
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(deref messages)
=> []

@messages
=> []

reading value
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alter

r

oldval

newval

(alter r update-fn & args)

(apply update-fn 
       oldval 
       args)
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(defn add-message [msg]
  (dosync (alter messages conj msg)))

updating

apply an...

scope a 
transaction

...update fn
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stms are not all 
created equal
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Clojure’s stm

48

not lock free

uses locks, latches, to avoid churn

deadlock detection & barging

no read tracking

readers never impede writers

nobody ever impedes readers

commute

ensure
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agents
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• 1:1 timeline/identity

• Atomic state succession

• Point-in-time value 
perception

(send aref f args)
returns immediately

queue enforces serialization

(f vN args) becomes vN+1

happens asynchronously in 
thread pool thread

agents as time construct
F

vN+1

vNs

vN

F FFFF
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agents are not actors

F

vN+1

vNs

vN

F FFFF

actors can distribute 
this queue

but at a price: 
1. no snapshot observers
2. no deadlock prevention

X X
51
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locks | stm | actors

is not a useful 
partition
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richer taxonomy

53

semantics
leverage
locality

presume
distance

uncoordinated
synchronous atoms N/A

coordinated
synchronous stm, pods N/A

uncoordinated
asynchronous agents actors
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the devil is in 
the details
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thread ready

55

all Clojure constructs work from any thread

fns are Callable and Runnable

use (future ...) to throw work to a thread pool

(defn fight
  [term1 term2]
  (let [r1 (future (estimated-hits-for term1))
        r2 (future (estimated-hits-for term2))]
    (future {term1 @r1 term2 @r2})))
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transients
• Persistent data structures 

are slower in sequential 
use (especially ‘writing’)

• But - no one can see what 
happens inside F

• I.e. the ‘birthing process’ 
of the next value can use 
our old (and new) 
performance tricks:

• Mutation and 
parallelism

• Parallel map on persistent 
vector same speed as 
loop on j.u.ArrayList on 
quad-core

• Safe ‘transient’ versions of 
PDS possible, with O(1) 
conversions between 
persistent/transient

vN

F

vN+1
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use commute
when update
can happen 

anytime
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(defn next-id
  "Get the next available id."
  []
  (dosync
   (alter ids inc)))

not safe for commute
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(defn increment-counter
  "Bump the internal count."
  []
  (dosync
   (alter ids inc))
  nil)

safe!
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prefer send-off
if agent ops
might block
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send

caller fixed thread 
pool

(send a fn & args)

(apply fn oldval args)

agent
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send-off

caller agent

cached
thread 
pool

(apply fn oldval args)

(send a fn & args)

62

62Friday, November 5, 2010



use ref-set to set 
initial/base state
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unified update, revisited

update 
mechanism ref atom agent

pure function 
application alter swap! send

pure function
(commutative) commute - -

pure function 
(blocking)

- - send-off

setter ref-set reset! -
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validation
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(def validate-message-list
  (partial 
    every? 
    #(and (:sender %) (:text %))))

(def messages 
  (ref 
    () 
    :validator validate-message-list))

create a 
function that checks

every item...

for some criteria

and associate fn with updates to a ref
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sending to agents 
from within 
transactions
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(defn add-message-with-backup [msg]
  (dosync 
   (let [snapshot (alter messages conj msg)]
     (send-off backup-agent (fn [filename]
! ! !       (spit filename snapshot)
! ! !       filename))
     snapshot)))

tying agent to a tx

exactly once if tx succeeds
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where are we?

69

time model beats control model

resembles reality more closely

makes design/code/test easier in general

now is a good time to switch

easier concurrency

easier parallelism

Clojure’s provides an approach that is

unified

multi-faceted
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thanks!

http://clojure.org
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