
Copyright 2007-2010 Relevance, Inc. This presentation is licensed under a Creative
Commons Attribution-Noncommercial-Share Alike 3.0 United States License.

See http://creativecommons.org/licenses/by-nc-sa/3.0/us/

Stuart Halloway
stu@clojure.com
@stuarthalloway

 Clojure Time

1Friday, November 5, 2010

http://creativecommons.org/licenses/by-nc-sa/3.0/us/
http://creativecommons.org/licenses/by-nc-sa/3.0/us/
mailto:stu@clojure.com
mailto:stu@clojure.com
mailto:stu@clojure.com
mailto:stu@clojure.com

the plan

2

modeling the world

total control model

concurrency and parallelism

an approach

2Friday, November 5, 2010

time
when things happen

before/after

later

concurrency

now

relative

3

3Friday, November 5, 2010

identity
continuity over time

built by minds

sameness across a series of perceptions

not a name, but can be named

can be composite

4

4Friday, November 5, 2010

perception
becoming aware via the senses

uncoordinated

provides values (snapshots)

contemplate values for as long as you like

5

5Friday, November 5, 2010

values
units of perception

points in time of identities

immutable

possibly composite

6

6Friday, November 5, 2010

action
change to identity(ies) over time

independent of other perceivers

makes new values available to perceivers

many possible semantics

might be coordinated

7

7Friday, November 5, 2010

total control model
global, total control

one processor

one memory

anything else is deep voodoo

roll-your-own time model

8

8Friday, November 5, 2010

difficulties with
rolling your own

9

time present unreliable, past nonexistent

identity locking + convention

perception ad hoc (copying?)

values class-level convention?

action side effects everywhere

9Friday, November 5, 2010

the problems
with convention

10

10Friday, November 5, 2010

add concurrency
 and parallelism to

the mix

11

11Friday, November 5, 2010

12

http://ghcmutterings.wordpress.com/2009/10/06/parallelism-concurrency/

“where did this dangerous
assumption that
Parallelism ==

Concurrency come from?”

12Friday, November 5, 2010

http://ghcmutterings.wordpress.com/2009/10/06/parallelism-concurrency/
http://ghcmutterings.wordpress.com/2009/10/06/parallelism-concurrency/

we need to switch
mental models

13

13Friday, November 5, 2010

Clojure’s
approach

14

14Friday, November 5, 2010

syntax

15

15Friday, November 5, 2010

atomic data types
type example java equivalent
string "foo" String

character \f Character

regex #"fo*" Pattern

integer 42 Long

a.r. integer 42N BigInteger

double 3.14159 Double

a.p. double 3.14159M BigDecimal

boolean true Boolean

nil nil null

ratio 22/7 N/A

symbol foo, + N/A

keyword :foo, ::foo N/A
16

16Friday, November 5, 2010

data literals

type properties example

list singly-linked,
insert at front (1 2 3)

vector indexed,
insert at rear [1 2 3]

map key/value
{:a 100
 :b 90}

set key #{:a :b}

17

17Friday, November 5, 2010

(println "Hello World")

function call

fn call argsemantics:

structure: symbol string

list

18

18Friday, November 5, 2010

(defn greet
 "Returns a friendly greeting"
 [your-name]
 (str "Hello, " your-name))

function definition

define a fn fn name
docstring

arguments

fn body

19

19Friday, November 5, 2010

(defn greet
 "Returns a friendly greeting"
 [your-name]
 (str "Hello, " your-name))

it's all data

symbol symbol
string

vector

list

20

20Friday, November 5, 2010

(defn ^String greet
 "Returns a friendly greeting"
 [your-name]
 (str "Hello, " your-name))

metadata

prefix with ^ class name or
arbitrary map

21

21Friday, November 5, 2010

values

22

22Friday, November 5, 2010

persistent data structures
immutable

“change” by function application

maintain performance guarantees

full-fidelity old versions

23

23Friday, November 5, 2010

persistent example:
linked list

tigerrabbitternnewt

“my” list
“your”

list

24

24Friday, November 5, 2010

bit-partitioned tries

“your”
trie

“my”
trie

25

25Friday, November 5, 2010

32-way tries

...

... ...

...

...

26

26Friday, November 5, 2010

identities

27

27Friday, November 5, 2010

refs

ref value

ref value

value

explicit semantic

state

28

28Friday, November 5, 2010

life with variables

variable

???

variable

???

?

29

29Friday, November 5, 2010

perceptions

30

30Friday, November 5, 2010

v1

F

v2

F

v3

F

v4

Process events
(pure functions)

Observers/perception/memory

States
(immutable values)Identity

(succession of
states)

Epochal Time Model

31

31Friday, November 5, 2010

actions

32

32Friday, November 5, 2010

(change-state ref fn [args*])

fn gets current state of ref

fn return becomes next state of ref

snapshot always available

no user locking

no deadlocks

writers never impede readers

unified update model

33

33Friday, November 5, 2010

unified update

;refs
(dosync
 (alter foo assoc :a "lucy"))

;agents
(send foo assoc :a "lucy")

;atoms
(swap! foo assoc :a "lucy")

34

34Friday, November 5, 2010

atoms

35

35Friday, November 5, 2010

36

• 1:1 timeline/identity

• Atomic state succession

• Point-in-time value
perception

F

v2

F

v3

F

v4

vN+1

vNs

vN

AtomicReference

(swap! an-atom f args)

(f vN args) becomes vN+1

- can automate spin

cas as time construct

36Friday, November 5, 2010

http://blog.bestinclass.dk/index.php/2009/10/brians-functional-brain/

37

37Friday, November 5, 2010

http://blog.bestinclass.dk/index.php/2009/10/brians-functional-brain/
http://blog.bestinclass.dk/index.php/2009/10/brians-functional-brain/

(defn new-board
 "Create a new board with about half the cells set
 to :on."
 ([] (apply new-board dim-board))
 ([dim-x dim-y]
 (for [x (range dim-x)]
 (for [y (range dim-y)]
 (if (< 50 (rand-int 100)) :on :off))))))

board is just a value

distinct bodies by arity

38

38Friday, November 5, 2010

(defn step
 "Advance the automation by one step, updating all
 cells."
 [board]
 (doall
 (map (fn [window]
 (apply #(doall (apply map rules %&))
 (doall (map torus-window window))))
 (torus-window board))))

update is just a function

rules

cursor over previous, me, next

39

39Friday, November 5, 2010

(let [stage (atom (new-board))]
 ...)

(defn update-stage
 "Update the automaton."
 [stage]
 (swap! stage step))

state is trivial

identity initial value

apply a fn update fn

40

40Friday, November 5, 2010

software
transactional

memory

41

41Friday, November 5, 2010

F

v1 v2 v3 v4

v1 v2 v3 v4

v1 v2 v3 v4

v1 v2 v3 v4

F

F

F

F

F

F

F F F

F

F

Transactions

stm as time construct

42

42Friday, November 5, 2010

(def messages (ref []))

ref example: chat

identity

initial value

43

43Friday, November 5, 2010

(deref messages)
=> []

@messages
=> []

reading value

44

44Friday, November 5, 2010

alter

r

oldval

newval

(alter r update-fn & args)

(apply update-fn
 oldval
 args)

45

45Friday, November 5, 2010

(defn add-message [msg]
 (dosync (alter messages conj msg)))

updating

apply an...

scope a
transaction

...update fn

46

46Friday, November 5, 2010

stms are not all
created equal

47

47Friday, November 5, 2010

Clojure’s stm

48

not lock free

uses locks, latches, to avoid churn

deadlock detection & barging

no read tracking

readers never impede writers

nobody ever impedes readers

commute

ensure

48Friday, November 5, 2010

agents

49

49Friday, November 5, 2010

50

• 1:1 timeline/identity

• Atomic state succession

• Point-in-time value
perception

(send aref f args)
returns immediately

queue enforces serialization

(f vN args) becomes vN+1

happens asynchronously in
thread pool thread

agents as time construct
F

vN+1

vNs

vN

F FFFF

50Friday, November 5, 2010

agents are not actors

F

vN+1

vNs

vN

F FFFF

actors can distribute
this queue

but at a price:
1. no snapshot observers
2. no deadlock prevention

X X
51

51Friday, November 5, 2010

locks | stm | actors

is not a useful
partition

52

52Friday, November 5, 2010

richer taxonomy

53

semantics
leverage
locality

presume
distance

uncoordinated
synchronous atoms N/A

coordinated
synchronous stm, pods N/A

uncoordinated
asynchronous agents actors

53Friday, November 5, 2010

the devil is in
the details

54

54Friday, November 5, 2010

thread ready

55

all Clojure constructs work from any thread

fns are Callable and Runnable

use (future ...) to throw work to a thread pool

(defn fight
 [term1 term2]
 (let [r1 (future (estimated-hits-for term1))
 r2 (future (estimated-hits-for term2))]
 (future {term1 @r1 term2 @r2})))

55Friday, November 5, 2010

transients
• Persistent data structures

are slower in sequential
use (especially ‘writing’)

• But - no one can see what
happens inside F

• I.e. the ‘birthing process’
of the next value can use
our old (and new)
performance tricks:

• Mutation and
parallelism

• Parallel map on persistent
vector same speed as
loop on j.u.ArrayList on
quad-core

• Safe ‘transient’ versions of
PDS possible, with O(1)
conversions between
persistent/transient

vN

F

vN+1

56

56Friday, November 5, 2010

use commute
when update
can happen

anytime
57

57Friday, November 5, 2010

(defn next-id
 "Get the next available id."
 []
 (dosync
 (alter ids inc)))

not safe for commute

58

58Friday, November 5, 2010

(defn increment-counter
 "Bump the internal count."
 []
 (dosync
 (alter ids inc))
 nil)

safe!

59

59Friday, November 5, 2010

prefer send-off
if agent ops
might block

60

60Friday, November 5, 2010

send

caller fixed thread
pool

(send a fn & args)

(apply fn oldval args)

agent

61

61Friday, November 5, 2010

send-off

caller agent

cached
thread
pool

(apply fn oldval args)

(send a fn & args)

62

62Friday, November 5, 2010

use ref-set to set
initial/base state

63

63Friday, November 5, 2010

unified update, revisited

update
mechanism ref atom agent

pure function
application alter swap! send

pure function
(commutative) commute - -

pure function
(blocking)

- - send-off

setter ref-set reset! -

64

64Friday, November 5, 2010

validation

65

65Friday, November 5, 2010

(def validate-message-list
 (partial
 every?
 #(and (:sender %) (:text %))))

(def messages
 (ref
 ()
 :validator validate-message-list))

create a
function that checks

every item...

for some criteria

and associate fn with updates to a ref

66

66Friday, November 5, 2010

sending to agents
from within
transactions

67

67Friday, November 5, 2010

(defn add-message-with-backup [msg]
 (dosync
 (let [snapshot (alter messages conj msg)]
 (send-off backup-agent (fn [filename]
! ! ! (spit filename snapshot)
! ! ! filename))
 snapshot)))

tying agent to a tx

exactly once if tx succeeds

68

68Friday, November 5, 2010

where are we?

69

time model beats control model

resembles reality more closely

makes design/code/test easier in general

now is a good time to switch

easier concurrency

easier parallelism

Clojure’s provides an approach that is

unified

multi-faceted

69Friday, November 5, 2010

thanks!

http://clojure.org

70

70Friday, November 5, 2010

http://www.clojure.org
http://www.clojure.org

