
From Lessons Learned to
Lessons Productized

Dr. Tim Wagner

Microsoft Visual Studio

VS Ultimate Director of Development

QCon 2010, SF

Feedback Loop

Build VS 2010

Dogfooding and
Customer
Feedback

Tactical
Optimizations in

SP1

Drive Lessons
into VS 2011

Planning

Improve
processes,

testing,
productivity

A 2008 Example:
Team Foundation Server Performance

Dogfood? Really?

How much dogfood?

 Database: 10 TB
 Users: 3,481
 Files: 1,033,167,658
 Uncompressed File Sizes: ~16TB
 Checkins: 2,047,024
 Shelvesets: 265,150
 Merge History: 2,458,112,813
 Pending Changes: 29,745,648
 Workspaces: 41,466
 Total Work Items: 913,619
 Last 30 days…

 Work Item queries: 275,806
 Work Item updates: 21,112
 Checkins: 20,975
 Shelves: 10,899
 Gets: 410,540

 The worse the pain, the more you need to feel it.

 You can’t simulate problems of scale.

 99% uptime for 400 is fine…99% uptime for 4,000 is not

 Problems of heterogeneity only manifest with a
sufficiently large population

Lessons Learned

 Gee, that looks scary– scaling successfully

 Untangling spaghetti – architectural dependencies

 Where are my reading glasses – a cautionary UI tale

 Dirty laundry – software components behaving badly

Caveat: This is not a product preview.

Stories from Visual Studio 2010…

VS 2010: Gee, That Looks Big

In one release I’d like to…

 Replace the IDE’s editor (for all
languages)

 Replace the shell’s UI and
windowing system

 Change the standard
extensibility mechanism to MEF

 Completely rewrite the C++
project and build system

 Oh, you wanted to get
something done as well?

…did I mention?

 50 Million lines of code

 …to say nothing of tests

 About 4,000 people involved

 Millions of customers

 “Prototype” by shipping

 VS2010 editor shipped first in
Blend

 Or limit exposure (C++ projects)

 Old and new side-by-side
during development

 Extensibility =
componentization =
testability

New Editor: Ideas that Worked

 “Let’s work in our own branches”

 “Shimming should be straightforward”

 5x bug ratio shims:core (and that’s still true today)

 Mistake to let so many clients keep using shims

 “You just call the {native, managed} code from
{managed, native}…how hard could it be?”

 Undo system was single largest cause of memory and
stress issues for the editor

New Editor: Ideas that Tanked

Lesson Productized:
What Would Make this Easier?

Lessons Productized:
Smaller is Better

Lesson Learned:
Agile + Portfolio Management

Shorter is Better

Lessons Productized:
Double Down on Agile

Research Trends

 Unit test discovery and path
analysis

 Detect code “repeats” and
suggest fixes

 Mocking frameworks and
techniques

 Statistical analysis of bugs and
bug fixes

Feature Crews

Product Units

Main Main

Languages

C# VB

Platform

Editor

Branching Mistakes

Feature Crews

Product Units

Scenarios

Main Main

New
Editor

C# VB

New
Shell

…

Branching Mistakes

Level 2

Level 1

Main Main

Build 34

Team A, build 22

4 Tests failing

Last FI: 510/1

Last RI: 10/10

... …

Team B, build 30

All tests passing

Last FI: 10/20

Last RI: 10/18

…

Internal Code Motion Dashboards

Untangling Spaghetti

 Assembly-level analysis for large “brown fields”

 Tolerance for legacy mistakes and business needs

 <permit>dependency we don’t like</permit>

 Usability at scale

 World view

 Flexible, incremental layout engine

 “Semantic zoom” to present most relevant information
at all zooming levels (just like mapping software)

Spaghetti Demo - Takeaways

When Usability is Functionality

Where are my Reading Glasses?

Shell Renovation Plan:
Staged Refactoring

 “Reverse engineer” a spec

 Find or write characterization tests

 Define the data models

 Replace the main window with WPF

 Write new…
 Window Manager, Command Bar presentation

 Hidden behind switches, off by default

 Scout with selected teams

 Test functionality, perf, stress, e2e, memory, remote, VM, …

 Reverse the switches
 Leave old presentation for regression testing

 Remove old code (and ship).

 A lot of things that we anticipated…
 Code that relied on HWNDs (estimated about right)
 Tests that relied on HWNDs

 Underestimated size and scope of problem, including the
diversity of these tests

 Significant cross-divisional functionality testing

 And then some we didn’t…
 Significant responsiveness issues (retread, interop)

 Responsiveness is suddenly part of characterization tests!
 Menu drop…

 Customer headaches...literal ones!

What Could Go Wrong?

Lessons Learned: Display Modes

Lessons Learned: Display Modes

 Ideal

 Display

Lessons Productized

 Offer display mode, fix gamma settings
 Pick a familiar default – you can’t force customers into happiness!

 Test (literally) for pixel-parity; anything less is subject to interpretation

 Diagnostics to capture and understand IDE “in the wild”
 Video driver nightmares

 Responsiveness tracking
 Preserving remote desktop optimization

 Identify anti-patterns…educate for now, consider “fingerprinting”
later

 Functionality – Watson

 Responsiveness – PerfWatson

 Dogfooding feedback – VS “send a smile” tool

 In-the-wild problems (video drivers)

 Built-in tools: Help About dxdiag

 Opt-in tools: SQM

 “on demand” tools: Mostly perf analyzers today

Feedback, Detection, and Diagnosis

Single biggest challenge: Issues we can’t diagnose in house

Dirty Laundry

VS 2010 Customer Survey

Count Performance Issue

193 Overall slowness
168 Startup takes too long
139 Intermittent slowdowns

Software Components

They’re awesome!

 Dynamically composable and
extensible

 Decoupled services, teams,
and delivery dates

 GC will solve all problems

 Independently testable

They’re terrible!

 Unpredictable once combined

 Emergent performance and
stress problems

 Leaks, responsiveness, …

 End-to-end customer testing is
the only source of truth

Lessons Productized:
PerfWatson (aka “no more spinner”)

#Hits Hit% Total Delay(s) Delay% Avg Delay Name

 4222 100% 25,027 100% 5 Root

 4222 100% 25,027 100% 5 devenv (999)

 4222 100% 25,027 100% 5 tid (100)

 1284 30% 14,487 57% 11 |ntdll!_RtlUserThreadStart

 1283 30% 14,485 57% 11 | ntdll!__RtlUserThreadStart

 1283 30% 14,485 57% 11 * | kernel32!BaseThreadInitThunk

 530 12% 1,730 6% 3 | |devenv!__tmainCRTStartup

 530 12% 1,730 6% 3 | | devenv!WinMain

 530 12% 1,730 6% 3 | | devenv!CDevEnvAppId::Run

 530 12% 1,730 6% 3 * | | => devenv!util_CallVsMain

 504 11% 1,637 6% 3 | | => msenv!VStudioMain

 504 11% 1,637 6% 3 | | => msenv!VStudioMainLogged

 504 11% 1,637 6% 3 | | => msenv!CMsoComponent::PushMsgLoop

 504 11% 1,637 6% 3 | | => msenv!SCM_MsoCompMgr::FPushMessageLoop

 504 11% 1,637 6% 3 | | => msenv!SCM::FPushMessageLoop

 504 11% 1,637 6% 3 | | => msenv!CMsoCMHandler::FPushMessageLoop

 504 11% 1,637 6% 3 | | => msenv!CMsoCMHandler::EnvironmentMsgLoop

 504 11% 1,637 6% 3 | | => msenv!SCM_MsoStdCompMgr::FDoIdle

 504 11% 1,637 6% 3 | | => msenv!SCM::FDoIdle

 504 11% 1,637 6% 3 | | => msenv!SCM::FDoIdleLoop

 380 9% 1,265 5% 3 | | |csproj!CLangPackage::FDoIdle

 380 9% 1,265 5% 3 | | | csproj!CVsProject::FDoIdle

 380 9% 1,265 5% 3 | | | csproj!CVsProject::InitF5HostingProcess

 UI hangs (“spinner”) triggers PerfWatson

 Snapshot of stack is taking and sent to server

 Server aggregates traces…

 The greater the delay and the more reports of that
trace, the higher it rises in the ranking

 Provides a prioritized, pre-diagnosed list of places to
go improve responsiveness

 Naturally aggregates across all components

Lessons Productized:
PerfWatson (aka “no more spinner”)

Lessons Learned: Memory is Finite

Memory Analysis Over Time
(“Stress” and end-to-end runs)

0

200

400

600

800

1000

1200

1400

0 1
5

3
0

4
5

6
0

7
5

9
0

1
0
5

1
2
0

1
3
5

M
il

li
o

n
s

Time (in Minutes)

VirtualBytes:Picasso Short Haul E2E (Dev10).1627824.1
 Ultimate + Windows 7, vs_langs 21214.00 High-End

NoStep

LoadSolution

ShowToolbox

Rebuild

AddClass

Scroll

AddEventHandler

TypeMethod

DebugStepInto

DebugStop

ShowAddReference

AddForm

AddControl

BuildClean

FullDebug

‘Debugging’ Memory

 F1 Demo

Memory Profiler and
Managed Leak Analysis

 Managed code leaks…

 GC is great for preventing errors, but leaks are hard to
find without memory regression analysis tools

 …but interop’ed code spews

 Collision of different memory management strategies
(COM, native to managed/GC)

 Need tools and training to isolate “boundary” problems

 Perf testing improvements…

Lessons Learned

 In house automation Better in-the-wild diagnostics

 Time perf Responsiveness analysis

 Regression analysis Scenario/OGF focus

 Repeatability Heterogeneity (VMs, remote, …)
 If you turn off virus checkers, what happens if that’s the bug?

 Internal examples Real customer solutions

 Microbenchmarks Multi-step end-to-ends

 Rollups of deltas Customer scorecards/gaps

A Changing View of Perf Testing

Reality check: The test matrix is infinite.

C# WPF XAML

0 10 20 30 40 50 60

VS2008 SP1 VSTS
Vista

VS2010 VSTS Vista

Seconds

Cider 20305.20306

Start Visual Studio

Open ComplexFormProject

Open MainWindow

Close / Reopen

Create Control

Resize Control

Add Event Handler

Use C# Intellisense

Build Only

App Domain Reload

Use XAML Intellisense

F5

Break into Debugger

Close Debugger

Close VS

OGF Impacting Fixes

Description Bug ID Owner PU Fixed In In Main Comments

Fixed in Main 1204 (current dogfood build)

Cannot hit all breakpoints in the Expression Blend solution
823959/7881

88
Michael

Lehenbauer
VSP 10/15 VSP Y`

ALIGN 16 for an asm constant is not ending up aligned in the
image

819251 Vance Morrison CLR
11/16 Tools

11/23 RC1Rel
Y

VS is leaking GDI handles during debugging. 824214 Jim Griesmer TeamEng 11/9 lab26vsts Y

Fixed in Main 1216 (next dogfood build)

Edit and continue functionality is broken in the Expression
Blend solution

824918 Barry Nolte TeamEng 12/3 lab26vsts Y

ENC not working is by design due to the
assembly being App-Domain Neutral
[workaround in place]. Debugger checked in an
improved error message to clarify the reason.

Random error dialogs pop up and crashes when editing Blend
XAML files inside VS

824167
Kevin Pilch-

Bisson
VS Langs 12/7 vs_langs0 Y

Crash on opening XAML / using intellisense inside the Blend
solution

829302 Eric Fisk WPF 12/7 vs_langs Y

Crash after typing some text in XAML using the Blend solution
using xaml async mode

829988 Eric Fisk WPF 12/7 vs_langs Y

Editor may become blocked for a long time shortly after a
solution is opened

829940
Dmitry

Goncharenko
VSL 12/15 vs_langs Y

Resolved OGF impacting “not fixed”

Description Bug ID Owner PU Resolution
Resolved

Date Comments

Conditional breakpoints are slower with CLR v4 829295 Closed CLR Won’t Fix 12/5

Result of a CLR 4.0 architectural change. Corner
case scenario in the Blend solution where BP is
in an event handler fired frequently, and
condition triggers 3 func-evals

Work with documents gets really sluggish and CPU pegs at 50%
after making a large XAML file dirty

824154 Closed Cider Not Repro Issue no longer repros in current builds

Potential perf improvement to managed stepping by reducing
UTF8 to Unicode conversion in CCompilandTrav::next

834153 Closed VC By Design 12/11
Cannot fix because this is the way the symbol
system was design to work for glob/loc reasons

Blend Dogfooding OGF – Large C# Solution [AndreHal]
Resolved Issues (no longer in flight)

Expected OGF: Good Current OGF: Fair

Build: 21216 (Main) Gap to Goal: 1 OGF Level (11 Bugs)

12/6/2010 44 Microsoft Confidential

 Scaling up isn’t just size…it’s population diversity

 Manage feature portfolios intelligently

 Big rock(s) and agile development, not “or”

 Customer feedback trumps your “rational” decisions

 Hippocratic Oath for architecture (trust but verify)

 Test componentized systems for emergent problems

Wrapup - Themes

 Learn more about Visual Studio:
www.visualstudio.com

 See components and extensions in the VS Gallery:
www.visualstudiogallery.com

 Hear about VS development processes and TFS on
Brian Harry’s blog: blogs.msdn.com/bharry

Q&A, links

http://www.visualstudio.com/
http://www.visualstudiogallery.com/
http://blogs.msdn.com/bharry
http://blogs.msdn.com/bharry

From Lessons Learned to
Lessons Productized

Dr. Tim Wagner

Visual Studio Director of Development

QCon 2010, SF

