
1000 Year-old
Design Patterns

Ulf Wiger
Erlang Solutions Ltd

QCon, San Francisco, 5 November 2010

Erlang Solutions Ltd.

Copyright 2008 – Erlang Training and Consulting Ltd

What this talk is about

  The search for an idea

  A walk down Memory Lane

  No easy recipes

Copyright 2008 – Erlang Training and Consulting Ltd

Movie Tips

  A few movies will be
recommended

  …when they illustrate
some aspect of this
talk

  Try expensing them as
“study of intuitive
concurrency design
patterns” From Inception (2010) http://www.imdb.com/title/tt1375666/

Copyright 2008 – Erlang Training and Consulting Ltd

Human cooperation is naturally concurrent

•  All sorts of concurrency
problems are common
knowledge to humans

•  Mitigation strategies
have been explored for
millennia

•  Lots of coordination
and supervision
design patterns

http://www.sassansanei.com/images/fullsize-trafficjam-640x480.jpg

Copyright 2008 – Erlang Training and Consulting Ltd

A problem…

•  Although humans
document their algos,

•  …they do it for human
consumption (S.O.P.s)

•  Not for programmers

•  Most research into ”human
algorithms” is about
cognitive modeling
(autonomous robots)

Mars Rover

Copyright 2008 – Erlang Training and Consulting Ltd

Research into human protocol

•  Collect examples of how humans
solve cooperation problems

•  Go to the movies!

•  Observe real-life
patterns; consider
what could transfer
to software systems

Copyright 2008 – Erlang Training and Consulting Ltd

AC2SMAN - My formative years

  Alaskan Command & Control System
Military Automated Network
  Built in 4 months by a fighter pilot

from Memphis, and some geeks
  First ever “Overall Outstanding” rating

given by NORAD 1989

Copyright 2008 – Erlang Training and Consulting Ltd

The C2 System Design Challenge

  Mission-critical

  Soft real-time

  Inconsistent data input

  Varying operating conditions

  Potentially global scale

  No single point of failure (40+ sites)

  Live, simulation and exercise – sometimes simultaneously

Copyright 2008 – Erlang Training and Consulting Ltd

The Competition

  One project had a $200M/year budget

  Desert Storm C2 system installation took 50K man-hours! (…!!!)

  (in our view) No alternative system came close to competing

  The secret?

  Keep the project small…

  Automate the existing workflow!
  The Air Force already knew how to do this - manually

Copyright 2008 – Erlang Training and Consulting Ltd

(Movie Tip)

  Crimson Tide (1995)

  Military command protocol

  Redundancy

  Fail-safes

  Byzantine Generals
Problem

  Bully algorithm

http://www.imdb.com/title/tt0112740/

Copyright 2008 – Erlang Training and Consulting Ltd

AC2SMAN Database issues

  Asynchronous, event-triggered replication
  Across 40 sites
  PAMS – Process-Activated Messaging System (later DECMessageQ)
  PowerHouse 4GL on top of DEC RMS

  No 2-phase commit – no conflicts ”possible”
  Access control and operational procedure limit what people can do
  Procedures for assessing multiple conflicting inputs

  Main challenge: full replication over a 19.2Kbps modem line

  Relational databases anno 1989 were simply non-starters

Copyright 2008 – Erlang Training and Consulting Ltd

The failed alternative?

  Trying to use early-90s Distributed RDBMS technology

  This was the beginning of the hardships
that led to the CAP Theorem

  The problem didn’t call for an RDBMS
  We’re automating a workflow that’s been around for millennia

Copyright 2008 – Erlang Training and Consulting Ltd

The Feed Aggregation Problem

  Real-time subscription feed for
tactical map workstations

  Messaging server was a big
pile of C++ code

  Single point of failure

  Ran out of memory daily

  (Not due to programmer
incompetence)

Copyright 2008 – Erlang Training and Consulting Ltd

I was Searching for a Solution

  Tons of approaches evaluated
  CASE Tools, Client-Server middleware,

AI middleware…

  Eventually landed in
telecoms 1992

  ”Computers in Telecommunictions”
course at KTH, Stockholm

  Teachers: B Däcker, R Virding
  Programming language: Erlang

  Erlang seemed to be a
perfect fit!

25-lines switchboard,
Natal Province, South Africa 1897
Cross-switchboard calls required
human interaction.

Copyright 2008 – Erlang Training and Consulting Ltd

Erlang, Intuitively
http://video.google.com/videoplay?docid=-5830318882717959520#

Copyright 2008 – Erlang Training and Consulting Ltd

Erlang, Intuitively

•  One concurrent process
for each naturally
concurrent
activity

Copyright 2008 – Erlang Training and Consulting Ltd

S

Client-server in Erlang

Client monitors server 1

Client sends a request 2

(Blocks while waiting) 3

C

listen()

accept() MRef

S C accept() Request (Mref)

listen()
S C accept() Reply (Mref)

Server sends reply 4

Copyright 2008 – Erlang Training and Consulting Ltd

S

Client-server in Erlang

Client monitors server 1

Client sends a request 2

Blocks while waiting 3

C

listen()

accept() MRef

S C accept() Request (Mref)

listen()
S C accept() Reply (Mref)

Server sends reply 4

call(S, Request, Timeout) ->  
 Mref = monitor(process, S),  
 S ! {call, Mref, Request},  
 awaiting_reply(Mref, Timeout).  

awaiting_reply(Mref, Timeout) ->  
 receive  
 {Mref, Reply} ->  
 Reply;  
 {’DOWN’, Mref, _, _, Reason} ->  
 error(Reason)  
 after Timeout ->  
 error(timeout)  
 end.  

Copyright 2008 – Erlang Training and Consulting Ltd

Supervisors – Out-of-Band Error Handling

  Robust systems can be built
using layering

  Program for the correct case

One-for-one

One-for-all

Rest-for-one

Escalation

Copyright 2008 – Erlang Training and Consulting Ltd

Handling sockets in Erlang

Static process opens
listen socket

1

Spawns an acceptor
process

2

Acceptor receives
incoming

3

Acks back to socket
owner

4

New acceptor is
spawned

5

Replies sent directly to
socket

6

listen()

accept()

Copyright 2008 – Erlang Training and Consulting Ltd

Middle-man Processes

  Practical because of
light-weight concurrency

  Normalizes messages

  Main process can pattern-
match on messages

  Keeps the main logic clear

spawn_link(PidA,	 PidB)	 -‐>	
	 	 	 	 spawn_link(fun()	 -‐>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 loop(#state{a_pid=	 PidA,	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 b_pid	 =	 PidB})	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 end).	

PidA MM PidB
XML Int.

await_negotiation(State)	 -‐>	
	 	 	 	 receive	
	 	 	 	 	 	 	 	 {From,	
	 	 	 	 	 	 	 	 	 {simple_xml,	
	 	 	 	 	 	 	 	 	 	 [{"offer",	 Attrs,	 Content}]}}	 -‐>	
	 	 	 	 	 	 	 	 	 	 	 	 HisOffer	 =	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 inspect_offer(Attrs,	 Content),	
	 	 	 	 	 	 	 	 	 	 	 	 Offer	 =	 calc_offer(HisOffer,	 State),	
	 	 	 	 	 	 	 	 	 	 	 	 From	 !	 {self(),	 Offer};	
	 	 	 	 	 	 	 	 …	
	 	 	 	 end.	

loop(#state{a_pid	 =	 PidA,	 b_pid	 =	 PidB}	 =	 State)	 -‐>	
	 	 	 	 receive	
	 	 	 	 	 	 	 {PidA,	 MsgBin}	 when	 is_binary(MsgBin)	 -‐>	
	 	 	 	 	 	 	 	 	 	 	 {simple_xml,	 _}	 =	 Msg	 =	 vccXml:simple_xml(MsgBin),	
	 	 	 	 	 	 	 	 	 	 	 PidB	 !	 {self(),	 Msg},	
	 	 	 	 	 	 	 	 	 	 	 loop(State);	
	 	 	 	 	 	 	 {PidB,	 {simple_xml,	 _}	 =	 Msg}	 -‐>	
	 	 	 	 	 	 	 	 	 	 	 Bin	 =	 vccXml:to_XML(Msg),	
	 	 	 	 	 	 	 	 	 	 	 PidA	 !	 {self(),	 Bin},	
	 	 	 	 	 	 	 	 	 	 	 loop(State)	
	 	 	 	 end.	

MM MM MM

Copyright 2008 – Erlang Training and Consulting Ltd

Language Model Affects our Thinking

  Three state machines described as one

  Implies a single-threaded event loop

  Introduces accidental complexity

state	 	 	 	 	 	 	 	 	 	 	 	 event	 	 	 	 	 	 	 	 	 	 	 	 	 	 action	 	 	 	 	 	 	 	 	 next	 state	
-‐	
...	
I-‐Open	 	 	 	 	 	 	 	 	 	 	 Send-‐Message	 	 	 	 	 	 	 I-‐Snd-‐Message	 	 I-‐Open	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 I-‐Rcv-‐Message	 	 	 	 	 	 Process	 	 	 	 	 	 	 	 I-‐Open	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 I-‐Rcv-‐DWR	 	 	 	 	 	 	 	 	 	 Process-‐DWR,	 	 	 I-‐Open	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 I-‐Snd-‐DWA	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 I-‐Rcv-‐DWA	 	 	 	 	 	 	 	 	 	 Process-‐DWA	 	 	 	 I-‐Open	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 R-‐Conn-‐CER	 	 	 	 	 	 	 	 	 R-‐Reject	 	 	 	 	 	 	 I-‐Open	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Stop	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 I-‐Snd-‐DPR	 	 	 	 	 	 Closing	 	
...	

Example: RFC 3588 – DIAMETER Base Protocol

Transport FSM

Handshake FSM

Copyright 2008 – Erlang Training and Consulting Ltd

Client Client

Server Server

Use processes to separate concerns

AAA

Transport FSM
•  Handles heartbeat

logic (RFC 3539)

Hand-
shake

Service

Service FSM
• Request routing
• Failover
• Retransmission

Handshake FSM
•  Capabilities exchange
•  Leader election
•  Only active during handshake

Client

Server

Dynamic request handler
•  One per request

Copyright 2008 – Erlang Training and Consulting Ltd

Ericsson – The Mythical Project

  I joined Ericsson 1996 to work with Erlang

  A very large project had just been canceled
  A well-publicized failure

  Distributed real-time, fault-tolerant complex systems in C++

Copyright 2008 – Erlang Training and Consulting Ltd

Why did it crash?

  No obvious single culprit
  Discussions about what went wrong dragged on for years

  Obviously, the size of the project was a problem
  But why so large?

  OO mania, featuritis, hubris?

  My thought: failure to contain the problem

Copyright 2008 – Erlang Training and Consulting Ltd

AXD301 – The Pickup Project

  200 people put into one building

  Mission: Build a product within 2 years
  Something in the ATM domain with Telecom Characteristics

  Much leeway was given

  Erlang/OTP chosen as key implementation technology

  Result: A product was delivered in 2 years
  Eventually returned Wireline Division to profit

Copyright 2008 – Erlang Training and Consulting Ltd

Pragmatic thinking

  Shell shocked from previous project

  Fall back on what’s known to work

  Straight and simple took us pretty far
  Up to 16x16 = 256 interconnected boards
  Up to 32 control plane processors
  Up to 500k simultaneous phone calls
  > 99.999% consistent uptime

–  (including maintenance & upgrades)

Copyright 2008 – Erlang Training and Consulting Ltd

Abstractions for non-determinism

  We were building complex distributed message-passing
systems

  Key challenge: contain the non-determinism!

  Prevent explosion of the state-event matrix

  This had been identified by Ericsson already in the late 70s…

Copyright 2008 – Erlang Training and Consulting Ltd

What’s the Secret Sauce?

  We weren’t smarter, more experienced

  We used an unproven technology
  Beta-tested the first version of the OTP middleware

  Yet, we outperformed other comparable projects

  What did the trick?
  Immutability?
  Functional programming?
  Concurrency model?
  Nothing?

Copyright 2008 – Erlang Training and Consulting Ltd

Outsiders about Erlang

  Non-programmers in our projects liked Erlang

  They understood the abstractions and design patterns

Copyright 2008 – Erlang Training and Consulting Ltd

Some similar projects

  In one (mature) UML/C++ project,
10% of all bugs were related to
unexpected order of events

  Inadequate methods for abstracting away
accindental ordering

Copyright 2008 – Erlang Training and Consulting Ltd

Programs modeling ”human protocols”

  Must have their own thread of control

  Communicate with messages

  A sense of time

  Adapt to changes/problems

  Control order of input processing

Copyright 2008 – Erlang Training and Consulting Ltd

Sanity check

  When assessing a concurrency pattern in software,
try to imagine what it would correspond to in
real-life, enacted by humans

Copyright 2008 – Erlang Training and Consulting Ltd

Tetris Management

  The age-old classic has coined
a new time management
method

  The idea: learn how to keep
the pile small

Copyright 2008 – Erlang Training and Consulting Ltd

Tetris Management

  Used in a derogatory sense
at a major software development
project

  As in ”reactive management
without a plan”

  Basically, don’t let your
project become a tetris game

Copyright 2008 – Erlang Training and Consulting Ltd

A different kind of puzzle

  What if your problem more resembles this?

  Would you attack this
problem with a
tetris approach?

http://www.worldslargestpuzzle.com/hof-008.html

Copyright 2008 – Erlang Training and Consulting Ltd

Event Handling Strategies

•  Twist and place the next
piece – before it lands

•  In cheat mode, you get
to peek at the next one

•  Otherwise, hope for the
best

•  Search for a specific
piece

•  Put away pieces that
don’t fit

•  Keep at it until fitting
piece found

Copyright 2008 – Erlang Training and Consulting Ltd

Event Handling in Software

•  FIFO, run-to-completion
event handling

•  Not allowed to block

•  Fine, as long as the
pieces fit…

•  Blocking, selective
receive

•  Wait until the next
desired piece arrives

•  Buffer unknown pieces

Copyright 2008 – Erlang Training and Consulting Ltd

(Movie Tip)

  Memento (2000)

  Human FIFO, run-to-
completion event
handling

  Storing context for
future reference

Memento (2000) http://www.imdb.com/title/tt0209144/

Copyright 2008 – Erlang Training and Consulting Ltd

In conclusion

  Our mental models greatly
influence how we attack
software problems

  Our real-life experience is
full of useful patterns for
concurrency

  Actor-style programming is
a pretty good fit for modeling
such patterns

Wall-E (2008) http://www.imdb.com/title/tt0910970/

Questions?

