
Agility in eBay

QCon San Francisco

November 17, 2011

Deepak Nadig
Distinguished Application Architect

eBay manages …
–  Over 97 million active users
–  Over 2 Billion photos

–  eBay users worldwide trade more than $2000 worth of goods every second
–  eBay averages well over 4 billion page views per day
–  At any given time, there are over 250 million items for sale on

the site in more than 50,000 categories
–  eBay stores over 5 Petabytes of data – over 500 times the size of the Library of Congress!
–  eBay analytics processes over 80 Petabytes of data on any day
–  The eBay platform handles 40 billion API calls per month

The eBay context

Over ½ Million pounds of
Kimchi are sold every year!

A sporting good sells every 2 seconds

In a dynamic environment
–  300+ features per quarter
–  We roll 100,000+ lines of code every two weeks

In 40 countries, in 20 languages.

>100 Billion SQL executions/day!

An SUV is sold every 5 minutes

2

Defining Agility

The capability of rapidly and cost efficiently adapting to changes

– Wikipedia

The ability of an organization to sense environmental change and to
respond efficiently and effectively to it

 – Gartner

3

Architecture Business Cycle (ABC)

to place them into a system-development context.

We have organized the set of forces into the following seven categories as follows:

1. stakeholder needs

2. business management issues

3. legal/contractual issues

4. commercial/competitive pressures

5. technical environment

6. political issues

7. life-cycle issues

The ABC Revisited
To represent the ways in which a force may affect a design, we have adopted and
adapted the Architecture Business Cycle (ABC) [Bass 03]. The ABC was originally
envisioned as a means of depicting the influences on an architect and on how an
architecture can eventually influence the forces that influenced the architecture, thus
creating a cycle. The original influences were the stakeholders and the developing
organization (who, together, fashioned the quality-attribute requirements), the technical
environment, and the architect’s experience.

In our adaptation of the ABC, the “influences” have been replaced by a set of forces that
collectively shape the requirements and, over time, the architect’s experience. The
extended ABC is depicted in Figure 1.

Figure 1: Extending the Architecture Business Cycle to Include All Design Forces

Notice that this extended ABC shows the requirements as being categorized into three
overlapping sets: quality-attribute requirements (e.g., the system should initialize itself
in 60 seconds), business requirements (e.g., version 1.0 must be available to our
resellers by August 1), and functional requirements (e.g., the system must provide
monthly sales summaries, broken down by region). These requirements, along with the
architect’s experience, are the inputs to the architect and to the architecture-design
process.

Capturing a Force
If we are to propose forces that designers and design methods can consider when
designing a system, we should be able to describe these forces clearly. Our goal is to
answer this question:

What do we need to communicate about a force so that everyone will understand it?

We propose the following scheme:

1. stimulus source: who brings the force to bear?

2. stimulus: what is the force?

3. artifact stimulated: what does the force act on?

4. environment: when is the force brought to bear (e.g., during development)?

5. response: what does the stimulus source desire as an outcome?

Architecture = (Business, Application, Data, Technology)

4

S-curve

Time

P
er

fo
rm

an
ce

ABC

ABC

Limits
reached

High
growth

Kickoff

ABC

ABC

5

eBay Architecture - Road to here

In
no

va
tio

n
Po

te
nt

ia
l

A
gi

lit
y

/ T
TM

A
rc

hi
te

ct
ur

e
M

at
ur

ity

19
95

·∙ Perl/C++
·∙ Inline HTML
·∙ Monolithic
·∙ Vertical Scale
·∙ Walled Garden

19
99

20
01

·∙ Java
·∙ XSL
·∙ Layered
·∙ Horizontal Scale
·∙ Some APIs

20
05

20
09
+

·∙ Java
·∙ V4 Components
·∙ Services
·∙ Internal Cloud
·∙ Platform

6

Business Drivers

Digital Social

Mobile Local

7

Business Imperative

8

How can I innovate faster than …

Architecture Vision

Application Platform

Login	
 Iden*ty	
 Catalog	
 Search	
 List	
 Pricing	
 Offer	
 ADs	
 Messages	
 Cart	
 Coupons	
 Payment	
 Shipping	
 CS	

Customer Experience

Core	
 Experience	
 Custom	
 Experiences	
 Channels	

Technology Platform

eBox	
 DAL	
 Dev	
 Tools	
 Raptor	
 Messaging	
 SOA	
 Cloud	

Operations Infrastructure Layer

Power	
 Data	
 Center	
 Hardware	
 Network	
 Database	
 Opera*ons	
 Tools	

A
gi

lit
y

S
ta

bi
lit

y

9

Partitioning into domains

10

Billing

Catalog

Tracking Experimentation

P13n Payment

Domain

Ideal decomposition
Intersection of any two domains = 0

Sum of all domains = eBay

Application
Platform

Service

Quality Attribute Tradeoffs

•  Quality attributes = Flexibility, Performance, Availability, …

•  Ranking by tier

•  Ranking by domains

… premature optimization is the root of all evil …

- Donald Knuth

11

Increasing agility in eBay

1.  Partition into tiers, domains and services

2.  Identify and eliminate any coupling between them

3.  Decentralize accountability

4.  Enable these domains to operate and iterate quickly

5.  Make it easy to use and compose services

12

Increasing agility in eBay

•  Process

•  People/organization

•  Technology

13

Process

•  Centralized  Decentralized

•  Waterfall  Scrum

•  Self-service & automation

•  Data driven through analytics and experimentation

14

People/Organization

•  Decentralized accountability

•  Matrix  Dedicated teams

•  Reduced dependencies

•  Change management

Remember Conway’s law

15

Technology

•  Application Platform

•  Configurable web applications

•  More open technologies

•  Analytics, Experimentation platforms

•  Continuous Integration

•  Cloud, Automation

•  Deployment latency

16

e.g. Security as agility increases

Decentralize risk management

Security standards built into the platform

Developer education

Self-service risk evaluation tools

Security consulting for high-risk scenarios

17

Want to increase agility?

1.  Be clear on the drivers

2.  Define agility constraints

3.  Partition, Decentralize, Automate

4.  Start small. Be customer-driven

5.  Manage change (especially with talent)

6.  Remember the Architecture Business Cycle

18

QUESTIONS?

19

