
Java.next
QConSF, November 2011

Erik Onnen

Wednesday, November 16, 2011



About Me

• Director of Architecture at Urban Airship (1 year)

• Previously Principal Engineer at Jive Software (3 years)

• 13 years writing Java, Python, C++

• Decent amount of hacking in Scala, Clojure, Ruby

Wednesday, November 16, 2011



Caveats 

Wednesday, November 16, 2011



Caveats 

• I like lots of things about Scala, Clojure and Groovy

Wednesday, November 16, 2011



Caveats 

• I like lots of things about Scala, Clojure and Groovy

• I am not a programming language student, author or 
expert

Wednesday, November 16, 2011



Caveats 

• I like lots of things about Scala, Clojure and Groovy

• I am not a programming language student, author or 
expert

• I am a practitioner

Wednesday, November 16, 2011



Caveats 

• I like lots of things about Scala, Clojure and Groovy

• I am not a programming language student, author or 
expert

• I am a practitioner

• Write lots of code quickly with good tools

Wednesday, November 16, 2011



Caveats 

• I like lots of things about Scala, Clojure and Groovy

• I am not a programming language student, author or 
expert

• I am a practitioner

• Write lots of code quickly with good tools

• Move quickly when troubleshooting production code

Wednesday, November 16, 2011



Caveats 

• I like lots of things about Scala, Clojure and Groovy

• I am not a programming language student, author or 
expert

• I am a practitioner

• Write lots of code quickly with good tools

• Move quickly when troubleshooting production code

• Move quickly when re-engaging with code 

Wednesday, November 16, 2011



In this Talk

• About Urban Airship

• Java at Urban Airship

• Java and the JVM

• Dat Tool

• Come at me Troll!

• What do we need to improve?

• What does the language need to improve?

Wednesday, November 16, 2011



What is an Urban Airship?

• Hosting for mobile services that developers should not 
build themselves

• Unified API for services across platforms

• SLAs for throughput, latency

Wednesday, November 16, 2011



FACT

Wednesday, November 16, 2011



FACT

• Over 50 Java services in production

Wednesday, November 16, 2011



FACT

• Over 50 Java services in production

• HTTP endpoints

Wednesday, November 16, 2011



FACT

• Over 50 Java services in production

• HTTP endpoints

• Databases

Wednesday, November 16, 2011



FACT

• Over 50 Java services in production

• HTTP endpoints

• Databases

• Message routing and delivery

Wednesday, November 16, 2011



FACT

• Over 50 Java services in production

• HTTP endpoints

• Databases

• Message routing and delivery

• Large scale socket management using NIO

Wednesday, November 16, 2011



FACT

• Over 50 Java services in production

• HTTP endpoints

• Databases

• Message routing and delivery

• Large scale socket management using NIO

• Large scale data analysis

Wednesday, November 16, 2011



FACT

• Over 50 Java services in production

• HTTP endpoints

• Databases

• Message routing and delivery

• Large scale socket management using NIO

• Large scale data analysis

• We also eschew most “Enterprise” Java

Wednesday, November 16, 2011



FACT

• Over 50 Java services in production

• HTTP endpoints

• Databases

• Message routing and delivery

• Large scale socket management using NIO

• Large scale data analysis

• We also eschew most “Enterprise” Java

• Everything in this talk we practice (and it works 
really well for us)

Wednesday, November 16, 2011



FACT

46%

28%

3%

21%
2%

A Day in UA Engineering

New Feature Development
Sustaining Engineering
IRC Tomfoolery
Production Support
Beer/Pong

Wednesday, November 16, 2011



Why Use The JVM?

Wednesday, November 16, 2011



Why Use The JVM?

• Fast. 

Wednesday, November 16, 2011



Why Use The JVM?

• Fast. 

• Networking, disk I/O, maths

Wednesday, November 16, 2011



Why Use The JVM?

• Fast. 

• Networking, disk I/O, maths

• Unless the GC is running :(

Wednesday, November 16, 2011



Why Use The JVM?

• Fast. 

• Networking, disk I/O, maths

• Unless the GC is running :(

• Consistent, coherent memory model and concurrency - no 
“undefined behavior”

Wednesday, November 16, 2011



Why Use The JVM?

• Fast. 

• Networking, disk I/O, maths

• Unless the GC is running :(

• Consistent, coherent memory model and concurrency - no 
“undefined behavior”

• Scalable NIO

Wednesday, November 16, 2011



Why Use The JVM?

• Fast. 

• Networking, disk I/O, maths

• Unless the GC is running :(

• Consistent, coherent memory model and concurrency - no 
“undefined behavior”

• Scalable NIO

• Threading, with a clean signal and interrupt handling 

Wednesday, November 16, 2011



Why Use The JVM?

• Fast. 

• Networking, disk I/O, maths

• Unless the GC is running :(

• Consistent, coherent memory model and concurrency - no 
“undefined behavior”

• Scalable NIO

• Threading, with a clean signal and interrupt handling 

• Introspect the runtime with little to no impact

Wednesday, November 16, 2011



Why Use The JVM?

• Fast. 

• Networking, disk I/O, maths

• Unless the GC is running :(

• Consistent, coherent memory model and concurrency - no 
“undefined behavior”

• Scalable NIO

• Threading, with a clean signal and interrupt handling 

• Introspect the runtime with little to no impact

• Snapshot the runtime under duress and analyze later

Wednesday, November 16, 2011



Why Use The JVM?

• Fast. 

• Networking, disk I/O, maths

• Unless the GC is running :(

• Consistent, coherent memory model and concurrency - no 
“undefined behavior”

• Scalable NIO

• Threading, with a clean signal and interrupt handling 

• Introspect the runtime with little to no impact

• Snapshot the runtime under duress and analyze later

• But - none of these are Java-specific

Wednesday, November 16, 2011



Why Java on the JVM?

Wednesday, November 16, 2011



Why Java on the JVM?

• There are many hammers available

Wednesday, November 16, 2011



Why Java on the JVM?

• There are many hammers available

• All are good at something

Wednesday, November 16, 2011



Why Java on the JVM?

• There are many hammers available

• All are good at something

• They are almost all interesting

Wednesday, November 16, 2011



Why Java on the JVM?

• There are many hammers available

• All are good at something

• They are almost all interesting

• Not all are OK at everything

Wednesday, November 16, 2011



Why Java on the JVM?

Wednesday, November 16, 2011



Why Java on the JVM?

• Java as a language is inherently simple - WYSIWYG (mostly)

Wednesday, November 16, 2011



Why Java on the JVM?

• Java as a language is inherently simple - WYSIWYG (mostly)

• Class behaviors are known by reading class code

Wednesday, November 16, 2011



Why Java on the JVM?

• Java as a language is inherently simple - WYSIWYG (mostly)

• Class behaviors are known by reading class code

• No multiple inheritance

Wednesday, November 16, 2011



Why Java on the JVM?

• Java as a language is inherently simple - WYSIWYG (mostly)

• Class behaviors are known by reading class code

• No multiple inheritance

• No monkey patching or trait collision rules to memorize

Wednesday, November 16, 2011



Why Java on the JVM?

• Java as a language is inherently simple - WYSIWYG (mostly)

• Class behaviors are known by reading class code

• No multiple inheritance

• No monkey patching or trait collision rules to memorize

• No hacking the global namespace or meta class munging

Wednesday, November 16, 2011



Why Java on the JVM?

• Java as a language is inherently simple - WYSIWYG (mostly)

• Class behaviors are known by reading class code

• No multiple inheritance

• No monkey patching or trait collision rules to memorize

• No hacking the global namespace or meta class munging

• No duck typing or hidden type coercion

Wednesday, November 16, 2011



Why Java on the JVM?

• Java as a language is inherently simple - WYSIWYG (mostly)

• Class behaviors are known by reading class code

• No multiple inheritance

• No monkey patching or trait collision rules to memorize

• No hacking the global namespace or meta class munging

• No duck typing or hidden type coercion

• Favors principle of least astonishment

Wednesday, November 16, 2011



Why Java on the JVM?

• Java as a language is inherently simple - WYSIWYG (mostly)

• Class behaviors are known by reading class code

• No multiple inheritance

• No monkey patching or trait collision rules to memorize

• No hacking the global namespace or meta class munging

• No duck typing or hidden type coercion

• Favors principle of least astonishment

“When you specifically try to dumb down good ideas for the 
masses, you reveal your contempt of said masses. Case 
study: Java.” - David Hansson

Wednesday, November 16, 2011



Why Java on the JVM?

Wednesday, November 16, 2011



Why Java on the JVM?

• Java is generally easy to read

Wednesday, November 16, 2011



Why Java on the JVM?

• Java is generally easy to read

• Easy to read means easy to maintain

Wednesday, November 16, 2011



Why Java on the JVM?

• Java is generally easy to read

• Easy to read means easy to maintain

Loop Recognition in C++/Java/Go/Scala - Robert Hundt, Google

Wednesday, November 16, 2011



Why Java on the JVM?

• Java is generally easy to read

• Easy to read means easy to maintain

Loop Recognition in C++/Java/Go/Scala - Robert Hundt, Google

Wednesday, November 16, 2011



Why Java on the JVM?

• Java is generally easy to read

• Easy to read means easy to maintain

Loop Recognition in C++/Java/Go/Scala - Robert Hundt, Google

Wednesday, November 16, 2011



Why Java on the JVM?

Wednesday, November 16, 2011



Why Java on the JVM?
• Almost no transparent performance degradation

Wednesday, November 16, 2011



Why Java on the JVM?
• Almost no transparent performance degradation

Wednesday, November 16, 2011



Why Java on the JVM?

Wednesday, November 16, 2011



Why Java on the JVM?
• No impedance with runtime introspection

Wednesday, November 16, 2011



Why Java on the JVM?
• No impedance with runtime introspection

• A thread dump is a thread dump

Wednesday, November 16, 2011



Why Java on the JVM?
• No impedance with runtime introspection

• A thread dump is a thread dump

• A heap dump is a heap dump

Wednesday, November 16, 2011



Why Java on the JVM?
• No impedance with runtime introspection

• A thread dump is a thread dump

• A heap dump is a heap dump

Wednesday, November 16, 2011



Why Java on the JVM?

Wednesday, November 16, 2011



Why Java on the JVM?
• Little idiomatic impedance with the runtime

Wednesday, November 16, 2011



Why Java on the JVM?
• Little idiomatic impedance with the runtime

http://dev.bizo.com/2010/01/scala-supports-non-local-returns.html
Wednesday, November 16, 2011

http://dev.bizo.com/2010/01/scala-supports-non-local-returns.html
http://dev.bizo.com/2010/01/scala-supports-non-local-returns.html


Why Java on the JVM?
• Little idiomatic impedance with the runtime

http://dev.bizo.com/2010/01/scala-supports-non-local-returns.html
Wednesday, November 16, 2011

http://dev.bizo.com/2010/01/scala-supports-non-local-returns.html
http://dev.bizo.com/2010/01/scala-supports-non-local-returns.html


Why Java on the JVM?

Wednesday, November 16, 2011



Why Java on the JVM?
• The tools

Wednesday, November 16, 2011



Why Java on the JVM?
• The tools

• People have mixed reactions to refactoring tools

Wednesday, November 16, 2011



Why Java on the JVM?
• The tools

• People have mixed reactions to refactoring tools

• IDEs starting to “learn”

Wednesday, November 16, 2011



Why Java on the JVM?
• The tools

• People have mixed reactions to refactoring tools

• IDEs starting to “learn”

• Find Usages

Wednesday, November 16, 2011



Why Java on the JVM?
• The tools

• People have mixed reactions to refactoring tools

• IDEs starting to “learn”

• Find Usages

• The ecosystem

Wednesday, November 16, 2011



Why Java on the JVM?
• The tools

• People have mixed reactions to refactoring tools

• IDEs starting to “learn”

• Find Usages

• The ecosystem

• One of if not the largest collections of FOSS libraries in 
existence

Wednesday, November 16, 2011



Why Java on the JVM?
• The tools

• People have mixed reactions to refactoring tools

• IDEs starting to “learn”

• Find Usages

• The ecosystem

• One of if not the largest collections of FOSS libraries in 
existence

• No language impedance

Wednesday, November 16, 2011



Dat Tool

Wednesday, November 16, 2011



Dat Tool

Wednesday, November 16, 2011



Dat Tool

Wednesday, November 16, 2011



Dat Tool

Wednesday, November 16, 2011



Dat Tool

Wednesday, November 16, 2011



Dat Tool

Wednesday, November 16, 2011



Dat Tool

Wednesday, November 16, 2011



Dat Tool

• Our job as developers is to implement something of 
business value

Wednesday, November 16, 2011



Dat Tool

• Our job as developers is to implement something of 
business value

• Things that make us more productive are good

Wednesday, November 16, 2011



Dat Tool

• Our job as developers is to implement something of 
business value

• Things that make us more productive are good

• It’s OK to use tools to help you build things if they 
improve your productivity and further the roles of a 
developer

Wednesday, November 16, 2011



Dat Tool

• Our job as developers is to implement something of 
business value

• Things that make us more productive are good

• It’s OK to use tools to help you build things if they 
improve your productivity and further the roles of a 
developer

• Most IDEs are completely misunderstood by someone 
who has never tried them - “I would miss my modal 
editing”

Wednesday, November 16, 2011



Come at me Troll!

Wednesday, November 16, 2011



Come at me Troll!

But Java doesn’t have closures!

Wednesday, November 16, 2011



Come at me Troll!

But Java doesn’t have closures!

• Java does have closures (imperfect closures to be exact)

Wednesday, November 16, 2011



Come at me Troll!

But Java doesn’t have closures!

• Java does have closures (imperfect closures to be exact)

• Java does not have lambda expressions (yet)

Wednesday, November 16, 2011



Come at me Troll!

But Java doesn’t have closures!

• Java does have closures (imperfect closures to be exact)

• Java does not have lambda expressions (yet)

• They’re nowhere near as painful as people claim

Wednesday, November 16, 2011



Come at me Troll!

But Java doesn’t have closures!

• Java does have closures (imperfect closures to be exact)

• Java does not have lambda expressions (yet)

• They’re nowhere near as painful as people claim

Wednesday, November 16, 2011



Come at me Troll!

Wednesday, November 16, 2011



Come at me Troll!

But Java makes me type so much and that hurts my 
delicate hands!

Wednesday, November 16, 2011



Come at me Troll!

But Java makes me type so much and that hurts my 
delicate hands!

• Stop pounding the nail with your head

Wednesday, November 16, 2011



Come at me Troll!

But Java makes me type so much and that hurts my 
delicate hands!

• Stop pounding the nail with your head

Wednesday, November 16, 2011



Come at me Troll!

Wednesday, November 16, 2011



Come at me Troll!

But Java makes me type so much and that hurts my 
delicate hands!

Wednesday, November 16, 2011



Come at me Troll!

But Java makes me type so much and that hurts my 
delicate hands!

• val numbers = Array[Integer](1,2,3,4)

Wednesday, November 16, 2011



Come at me Troll!

But Java makes me type so much and that hurts my 
delicate hands!

• val numbers = Array[Integer](1,2,3,4)

• val numbers = Array(1,2,3,4)

Wednesday, November 16, 2011



Come at me Troll!

But Java makes me type so much and that hurts my 
delicate hands!

• val numbers = Array[Integer](1,2,3,4)

• val numbers = Array(1,2,3,4)

• int[] numbers = new int[]{1,2,3,4};

Wednesday, November 16, 2011



Come at me Troll!

But Java makes me type so much and that hurts my 
delicate hands!

• val numbers = Array[Integer](1,2,3,4)

• val numbers = Array(1,2,3,4)

• int[] numbers = new int[]{1,2,3,4};

Hey, that example is not fair!

Wednesday, November 16, 2011



Come at me Troll!

But Java makes me type so much and that hurts my 
delicate hands!

• val numbers = Array[Integer](1,2,3,4)

• val numbers = Array(1,2,3,4)

• int[] numbers = new int[]{1,2,3,4};

Hey, that example is not fair!

• val str = “SPORTS!”

Wednesday, November 16, 2011



Come at me Troll!

But Java makes me type so much and that hurts my 
delicate hands!

• val numbers = Array[Integer](1,2,3,4)

• val numbers = Array(1,2,3,4)

• int[] numbers = new int[]{1,2,3,4};

Hey, that example is not fair!

• val str = “SPORTS!”

• final String str = “SPORTS!”;

Wednesday, November 16, 2011



Come at me Troll!

But Java has soooo much line noise it’s hard to read!

• Stop pounding the nail with your head

• The human brain simply doesn’t work like that

Wednesday, November 16, 2011



What We Can Change

Wednesday, November 16, 2011



What We Can Change
• Java gets a bad rap, often for baggage in the ecosystem as a 

whole rather than the language specifically

Wednesday, November 16, 2011



What We Can Change
• Java gets a bad rap, often for baggage in the ecosystem as a 

whole rather than the language specifically

• Some of this is due to big vendors in the space

Wednesday, November 16, 2011



What We Can Change
• Java gets a bad rap, often for baggage in the ecosystem as a 

whole rather than the language specifically

• Some of this is due to big vendors in the space

• Some of it is because of the bloat

Wednesday, November 16, 2011



What We Can Change
• Java gets a bad rap, often for baggage in the ecosystem as a 

whole rather than the language specifically

• Some of this is due to big vendors in the space

• Some of it is because of the bloat

• But usually, it’s because we Java developers learn too slowly 
from things going on around us and get stuck in our ways

Wednesday, November 16, 2011



What We Can Change

Wednesday, November 16, 2011



What We Can Change
• Do not - view the world as a pattern waiting to happen

Wednesday, November 16, 2011



What We Can Change
• Do not - view the world as a pattern waiting to happen

• Patterns, Enterprise Patterns, Anti-patterns and please yes, 
buy my book

Wednesday, November 16, 2011



What We Can Change
• Do not - view the world as a pattern waiting to happen

• Patterns, Enterprise Patterns, Anti-patterns and please yes, 
buy my book

• Do - get your job done

Wednesday, November 16, 2011



What We Can Change
• Do not - view the world as a pattern waiting to happen

• Patterns, Enterprise Patterns, Anti-patterns and please yes, 
buy my book

• Do - get your job done

• Your business sponsors don’t care that you used 
FlyweightSingletonFactoryDelegateVisitor.java

Wednesday, November 16, 2011



What We Can Change
• Do not - view the world as a pattern waiting to happen

• Patterns, Enterprise Patterns, Anti-patterns and please yes, 
buy my book

• Do - get your job done

• Your business sponsors don’t care that you used 
FlyweightSingletonFactoryDelegateVisitor.java

• Of course, some usage is fine but focus on writing code - 
patterns don’t define correctness

Wednesday, November 16, 2011



What We Can Change

Wednesday, November 16, 2011



What We Can Change
• Do not - be afraid to have non-domain code in your code

Wednesday, November 16, 2011



What We Can Change
• Do not - be afraid to have non-domain code in your code

• If latency to a system matters, measure that explicitly and 
overtly

Wednesday, November 16, 2011



What We Can Change
• Do not - be afraid to have non-domain code in your code

• If latency to a system matters, measure that explicitly and 
overtly

• Be tempted into talk of AoP and cross-cutting concerns - your 
job isn’t just coding, it’s also sustaining and troubleshooting

Wednesday, November 16, 2011



What We Can Change
• Do not - be afraid to have non-domain code in your code

• If latency to a system matters, measure that explicitly and 
overtly

• Be tempted into talk of AoP and cross-cutting concerns - your 
job isn’t just coding, it’s also sustaining and troubleshooting

• Concurrency doesn’t align w/ business concerns anyway

Wednesday, November 16, 2011



What We Can Change
• Do not - be afraid to have non-domain code in your code

• If latency to a system matters, measure that explicitly and 
overtly

• Be tempted into talk of AoP and cross-cutting concerns - your 
job isn’t just coding, it’s also sustaining and troubleshooting

• Concurrency doesn’t align w/ business concerns anyway

• Business domain doesn’t have “logs” but OPS needs to

Wednesday, November 16, 2011



What We Can Change
• Do not - be afraid to have non-domain code in your code

• If latency to a system matters, measure that explicitly and 
overtly

• Be tempted into talk of AoP and cross-cutting concerns - your 
job isn’t just coding, it’s also sustaining and troubleshooting

• Concurrency doesn’t align w/ business concerns anyway

• Business domain doesn’t have “logs” but OPS needs to

• Do - leverage proven, simple libraries to help

Wednesday, November 16, 2011



What We Can Change
• Do not - be afraid to have non-domain code in your code

• If latency to a system matters, measure that explicitly and 
overtly

• Be tempted into talk of AoP and cross-cutting concerns - your 
job isn’t just coding, it’s also sustaining and troubleshooting

• Concurrency doesn’t align w/ business concerns anyway

• Business domain doesn’t have “logs” but OPS needs to

• Do - leverage proven, simple libraries to help

• Coda Hale’s metrics library out of Yammer is essential

Wednesday, November 16, 2011



What We Can Change
• Do not - be afraid to have non-domain code in your code

• If latency to a system matters, measure that explicitly and 
overtly

• Be tempted into talk of AoP and cross-cutting concerns - your 
job isn’t just coding, it’s also sustaining and troubleshooting

• Concurrency doesn’t align w/ business concerns anyway

• Business domain doesn’t have “logs” but OPS needs to

• Do - leverage proven, simple libraries to help

• Coda Hale’s metrics library out of Yammer is essential

• Log4J, SLF4J, lots of good choices

Wednesday, November 16, 2011



What We Can Change

Wednesday, November 16, 2011



What We Can Change
• Do - learn from Erlang’s immutable data structures

Wednesday, November 16, 2011



What We Can Change
• Do - learn from Erlang’s immutable data structures

• Move data using immutable models

Wednesday, November 16, 2011



What We Can Change
• Do - learn from Erlang’s immutable data structures

• Move data using immutable models

• Fast, efficient, easy to reason about, thread safe

Wednesday, November 16, 2011



What We Can Change
• Do - learn from Erlang’s immutable data structures

• Move data using immutable models

• Fast, efficient, easy to reason about, thread safe

• Easy to put down the wire (Jackson, PBs) or into a schema-
less store

Wednesday, November 16, 2011



What We Can Change
• Do - learn from Erlang’s immutable data structures

• Move data using immutable models

• Fast, efficient, easy to reason about, thread safe

• Easy to put down the wire (Jackson, PBs) or into a schema-
less store

• Just properties, no getFoo

Wednesday, November 16, 2011



What We Can Change
• Do - learn from Erlang’s immutable data structures

• Move data using immutable models

• Fast, efficient, easy to reason about, thread safe

• Easy to put down the wire (Jackson, PBs) or into a schema-
less store

• Just properties, no getFoo

• No behaviors

Wednesday, November 16, 2011



What We Can Change
• Do - learn from Erlang’s immutable data structures

• Move data using immutable models

• Fast, efficient, easy to reason about, thread safe

• Easy to put down the wire (Jackson, PBs) or into a schema-
less store

• Just properties, no getFoo

• No behaviors

• Do not - assume your classes need to model “real world” things

Wednesday, November 16, 2011



What We Can Change
• Do - learn from Erlang’s immutable data structures

• Move data using immutable models

• Fast, efficient, easy to reason about, thread safe

• Easy to put down the wire (Jackson, PBs) or into a schema-
less store

• Just properties, no getFoo

• No behaviors

• Do not - assume your classes need to model “real world” things

• A class doesn’t exist in the “real world”, don’t try and make it 
look like that

Wednesday, November 16, 2011



What We Can Change
• Do - learn from Erlang’s immutable data structures

• Move data using immutable models

• Fast, efficient, easy to reason about, thread safe

• Easy to put down the wire (Jackson, PBs) or into a schema-
less store

• Just properties, no getFoo

• No behaviors

• Do not - assume your classes need to model “real world” things

• A class doesn’t exist in the “real world”, don’t try and make it 
look like that

• Bob doesn’t have a save() method
Wednesday, November 16, 2011



What We Can Change

Wednesday, November 16, 2011



What We Can Change
• Do - create coarse grained, transaction-aligned APIs

Wednesday, November 16, 2011



What We Can Change
• Do - create coarse grained, transaction-aligned APIs

• Leave no ambiguity about what impact an operation has on a 
back-end data store

Wednesday, November 16, 2011



What We Can Change
• Do - create coarse grained, transaction-aligned APIs

• Leave no ambiguity about what impact an operation has on a 
back-end data store

• Measure latency to external services

Wednesday, November 16, 2011



What We Can Change
• Do - create coarse grained, transaction-aligned APIs

• Leave no ambiguity about what impact an operation has on a 
back-end data store

• Measure latency to external services

• Easier to reason about concurrency (implementation and 
consumption)

Wednesday, November 16, 2011



What We Can Change
• Do - create coarse grained, transaction-aligned APIs

• Leave no ambiguity about what impact an operation has on a 
back-end data store

• Measure latency to external services

• Easier to reason about concurrency (implementation and 
consumption)

• Go’s behavior separate from data

Wednesday, November 16, 2011



What We Can Change
• Do - create coarse grained, transaction-aligned APIs

• Leave no ambiguity about what impact an operation has on a 
back-end data store

• Measure latency to external services

• Easier to reason about concurrency (implementation and 
consumption)

• Go’s behavior separate from data

• Do not - use magic, code generating systems that hide transactions 
across APIs

Wednesday, November 16, 2011



What We Can Change
• Do - create coarse grained, transaction-aligned APIs

• Leave no ambiguity about what impact an operation has on a 
back-end data store

• Measure latency to external services

• Easier to reason about concurrency (implementation and 
consumption)

• Go’s behavior separate from data

• Do not - use magic, code generating systems that hide transactions 
across APIs

• Leaky abstraction - you call a method, a TXN happens

Wednesday, November 16, 2011



What We Can Change
• Do - create coarse grained, transaction-aligned APIs

• Leave no ambiguity about what impact an operation has on a 
back-end data store

• Measure latency to external services

• Easier to reason about concurrency (implementation and 
consumption)

• Go’s behavior separate from data

• Do not - use magic, code generating systems that hide transactions 
across APIs

• Leaky abstraction - you call a method, a TXN happens

• When performance suffers, you will want to know what is going on 
but can’t

Wednesday, November 16, 2011



What We Can Change

Wednesday, November 16, 2011



What We Can Change
• Do - create coarse grained, transaction-aligned APIs operating on 

immutable models

Wednesday, November 16, 2011



What We Can Change
• Do - create coarse grained, transaction-aligned APIs operating on 

immutable models

• Learn from Go’s keeping operations separate from data

Wednesday, November 16, 2011



What We Can Change
• Do - create coarse grained, transaction-aligned APIs operating on 

immutable models

• Learn from Go’s keeping operations separate from data

• Return clones of data but nothing that has ties back in to a data 
store

Wednesday, November 16, 2011



What We Can Change
• Do - create coarse grained, transaction-aligned APIs operating on 

immutable models

• Learn from Go’s keeping operations separate from data

• Return clones of data but nothing that has ties back in to a data 
store

• Easier to reason about, no ambiguity, pass as messages

Wednesday, November 16, 2011



What We Can Change
• Do - create coarse grained, transaction-aligned APIs operating on 

immutable models

• Learn from Go’s keeping operations separate from data

• Return clones of data but nothing that has ties back in to a data 
store

• Easier to reason about, no ambiguity, pass as messages

• Do not - use magic, code generating systems that hide transactions 
across APIs

Wednesday, November 16, 2011



What We Can Change
• Do - create coarse grained, transaction-aligned APIs operating on 

immutable models

• Learn from Go’s keeping operations separate from data

• Return clones of data but nothing that has ties back in to a data 
store

• Easier to reason about, no ambiguity, pass as messages

• Do not - use magic, code generating systems that hide transactions 
across APIs

• A class doesn’t exist in the “real world”, don’t try and make it 
look like the real world

Wednesday, November 16, 2011



What We Can Change
• Do - create coarse grained, transaction-aligned APIs operating on 

immutable models

• Learn from Go’s keeping operations separate from data

• Return clones of data but nothing that has ties back in to a data 
store

• Easier to reason about, no ambiguity, pass as messages

• Do not - use magic, code generating systems that hide transactions 
across APIs

• A class doesn’t exist in the “real world”, don’t try and make it 
look like the real world

• Bob doesn’t have a save() method 

Wednesday, November 16, 2011



What We Can Change
• Do - create coarse grained, transaction-aligned APIs operating on 

immutable models

• Learn from Go’s keeping operations separate from data

• Return clones of data but nothing that has ties back in to a data 
store

• Easier to reason about, no ambiguity, pass as messages

• Do not - use magic, code generating systems that hide transactions 
across APIs

• A class doesn’t exist in the “real world”, don’t try and make it 
look like the real world

• Bob doesn’t have a save() method 

• Nest models in behaviors, in models in behaviors
Wednesday, November 16, 2011



What We Can Change

Wednesday, November 16, 2011



What We Can Change
• Do not - be afraid to write SQL or actually new an object

Wednesday, November 16, 2011



What We Can Change
• Do not - be afraid to write SQL or actually new an object

• Executing an SQL query is about the easiest thing you can do

Wednesday, November 16, 2011



What We Can Change
• Do not - be afraid to write SQL or actually new an object

• Executing an SQL query is about the easiest thing you can do

• Mapping it to some data isn’t all that hard either

Wednesday, November 16, 2011



What We Can Change
• Do not - be afraid to write SQL or actually new an object

• Executing an SQL query is about the easiest thing you can do

• Mapping it to some data isn’t all that hard either

• Test it and move on

Wednesday, November 16, 2011



What We Can Change
• Do not - be afraid to write SQL or actually new an object

• Executing an SQL query is about the easiest thing you can do

• Mapping it to some data isn’t all that hard either

• Test it and move on

• Do - question configuration complexity and network abstractions

Wednesday, November 16, 2011



What We Can Change
• Do not - be afraid to write SQL or actually new an object

• Executing an SQL query is about the easiest thing you can do

• Mapping it to some data isn’t all that hard either

• Test it and move on

• Do - question configuration complexity and network abstractions

• If you go to the wire, that should be in your face

Wednesday, November 16, 2011



What We Can Change
• Do not - be afraid to write SQL or actually new an object

• Executing an SQL query is about the easiest thing you can do

• Mapping it to some data isn’t all that hard either

• Test it and move on

• Do - question configuration complexity and network abstractions

• If you go to the wire, that should be in your face

• XML configurations are an immediate indicator of impending 
complexity

Wednesday, November 16, 2011



What We Can Change
• Do not - be afraid to write SQL or actually new an object

• Executing an SQL query is about the easiest thing you can do

• Mapping it to some data isn’t all that hard either

• Test it and move on

• Do - question configuration complexity and network abstractions

• If you go to the wire, that should be in your face

• XML configurations are an immediate indicator of impending 
complexity

• Realize IoC is not in and of itself a bad thing but you don’t 
need a framework to accomplish it

Wednesday, November 16, 2011



What We Can Change

Wednesday, November 16, 2011



What We Can Change
• Do not - use XML for anything. Ever.

Wednesday, November 16, 2011



What We Can Change
• Do not - use XML for anything. Ever.

• XML is pretty much good at nothing other than cementing 
unnecessary complexity at every level

Wednesday, November 16, 2011



What We Can Change
• Do not - use XML for anything. Ever.

• XML is pretty much good at nothing other than cementing 
unnecessary complexity at every level

• XML is not code!

Wednesday, November 16, 2011



What We Can Change
• Do not - use XML for anything. Ever.

• XML is pretty much good at nothing other than cementing 
unnecessary complexity at every level

• XML is not code!

• Do - use simple, standard mechanisms

Wednesday, November 16, 2011



What We Can Change
• Do not - use XML for anything. Ever.

• XML is pretty much good at nothing other than cementing 
unnecessary complexity at every level

• XML is not code!

• Do - use simple, standard mechanisms

• For configuration files, use properties files

Wednesday, November 16, 2011



What We Can Change
• Do not - use XML for anything. Ever.

• XML is pretty much good at nothing other than cementing 
unnecessary complexity at every level

• XML is not code!

• Do - use simple, standard mechanisms

• For configuration files, use properties files

• Easier to use in modern automation environments like 
Puppet

Wednesday, November 16, 2011



What We Can Change
• Do not - use XML for anything. Ever.

• XML is pretty much good at nothing other than cementing 
unnecessary complexity at every level

• XML is not code!

• Do - use simple, standard mechanisms

• For configuration files, use properties files

• Easier to use in modern automation environments like 
Puppet

• Commons Config rocks

Wednesday, November 16, 2011



What We Can Change
• Do not - use XML for anything. Ever.

• XML is pretty much good at nothing other than cementing 
unnecessary complexity at every level

• XML is not code!

• Do - use simple, standard mechanisms

• For configuration files, use properties files

• Easier to use in modern automation environments like 
Puppet

• Commons Config rocks

• For wire data, use PBs or JSON

Wednesday, November 16, 2011



What We Can Change

Wednesday, November 16, 2011



What We Can Change
• Do not - accept the “Enterprise” mentality

Wednesday, November 16, 2011



What We Can Change
• Do not - accept the “Enterprise” mentality

• Just say no to EARs, EJBs, and mostly WARs

Wednesday, November 16, 2011



What We Can Change
• Do not - accept the “Enterprise” mentality

• Just say no to EARs, EJBs, and mostly WARs

• More XML, complex build process, complex deploy process

Wednesday, November 16, 2011



What We Can Change
• Do not - accept the “Enterprise” mentality

• Just say no to EARs, EJBs, and mostly WARs

• More XML, complex build process, complex deploy process

• Generally prohibit important things

Wednesday, November 16, 2011



What We Can Change
• Do not - accept the “Enterprise” mentality

• Just say no to EARs, EJBs, and mostly WARs

• More XML, complex build process, complex deploy process

• Generally prohibit important things

• Not needed for scale

Wednesday, November 16, 2011



What We Can Change
• Do not - accept the “Enterprise” mentality

• Just say no to EARs, EJBs, and mostly WARs

• More XML, complex build process, complex deploy process

• Generally prohibit important things

• Not needed for scale

• Do - write small, discrete, stand-alone services

Wednesday, November 16, 2011



What We Can Change
• Do not - accept the “Enterprise” mentality

• Just say no to EARs, EJBs, and mostly WARs

• More XML, complex build process, complex deploy process

• Generally prohibit important things

• Not needed for scale

• Do - write small, discrete, stand-alone services

• Easier to operate

Wednesday, November 16, 2011



What We Can Change
• Do not - accept the “Enterprise” mentality

• Just say no to EARs, EJBs, and mostly WARs

• More XML, complex build process, complex deploy process

• Generally prohibit important things

• Not needed for scale

• Do - write small, discrete, stand-alone services

• Easier to operate

• Easier to reason about

Wednesday, November 16, 2011



What We Can Change
• Do not - accept the “Enterprise” mentality

• Just say no to EARs, EJBs, and mostly WARs

• More XML, complex build process, complex deploy process

• Generally prohibit important things

• Not needed for scale

• Do - write small, discrete, stand-alone services

• Easier to operate

• Easier to reason about

• Strive for consistent approaches to all Java services

Wednesday, November 16, 2011



What We Can Change

Wednesday, November 16, 2011



What We Can Change
• Do - stop making web development so complicated

Wednesday, November 16, 2011



What We Can Change
• Do - stop making web development so complicated

• Conventional approaches are too difficult, especially for APIs

Wednesday, November 16, 2011



What We Can Change
• Do - stop making web development so complicated

• Conventional approaches are too difficult, especially for APIs

• Consider Play or simply just embedding Jetty

Wednesday, November 16, 2011



What We Can Change
• Do - stop making web development so complicated

• Conventional approaches are too difficult, especially for APIs

• Consider Play or simply just embedding Jetty

• Embedding Jetty takes 16 lines of real code, add Jersey 
Annotations for fast, strongly typed HTTP endpoints and profit!

Wednesday, November 16, 2011



What We Can Change
• Do - stop making web development so complicated

• Conventional approaches are too difficult, especially for APIs

• Consider Play or simply just embedding Jetty

• Embedding Jetty takes 16 lines of real code, add Jersey 
Annotations for fast, strongly typed HTTP endpoints and profit!

• Do not - assume you need a WAR in a container to deliver or 
scale

Wednesday, November 16, 2011



What We Can Change
• Do - stop making web development so complicated

• Conventional approaches are too difficult, especially for APIs

• Consider Play or simply just embedding Jetty

• Embedding Jetty takes 16 lines of real code, add Jersey 
Annotations for fast, strongly typed HTTP endpoints and profit!

• Do not - assume you need a WAR in a container to deliver or 
scale

• Sites of massive scale succeed without these mechanisms

Wednesday, November 16, 2011



What We Can Change
• Do - stop making web development so complicated

• Conventional approaches are too difficult, especially for APIs

• Consider Play or simply just embedding Jetty

• Embedding Jetty takes 16 lines of real code, add Jersey 
Annotations for fast, strongly typed HTTP endpoints and profit!

• Do not - assume you need a WAR in a container to deliver or 
scale

• Sites of massive scale succeed without these mechanisms

• Big vendors push a false sense of security

Wednesday, November 16, 2011



What We Can Change

Wednesday, November 16, 2011



What We Can Change
• Do - abuse final

Wednesday, November 16, 2011



What We Can Change
• Do - abuse final

• Simplifies closures, predicates, etc.

Wednesday, November 16, 2011



What We Can Change
• Do - abuse final

• Simplifies closures, predicates, etc.

• Avoid public APIs relying on subclassing

Wednesday, November 16, 2011



What We Can Change
• Do - abuse final

• Simplifies closures, predicates, etc.

• Avoid public APIs relying on subclassing

• Clear expression of intent - you shall not change!

Wednesday, November 16, 2011



What We Can Change
• Do - abuse final

• Simplifies closures, predicates, etc.

• Avoid public APIs relying on subclassing

• Clear expression of intent - you shall not change!

• Do not - do it for performance reasons

Wednesday, November 16, 2011



What We Can Change
• Do - abuse final

• Simplifies closures, predicates, etc.

• Avoid public APIs relying on subclassing

• Clear expression of intent - you shall not change!

• Do not - do it for performance reasons

• Your code may perform better but that’s not the point

Wednesday, November 16, 2011



What We Can Change
• Do - abuse final

• Simplifies closures, predicates, etc.

• Avoid public APIs relying on subclassing

• Clear expression of intent - you shall not change!

• Do not - do it for performance reasons

• Your code may perform better but that’s not the point

• Fall victim to the maybe extend effect

Wednesday, November 16, 2011



What We Can Change

Wednesday, November 16, 2011



What We Can Change
• Do not - use checked exceptions

Wednesday, November 16, 2011



What We Can Change
• Do not - use checked exceptions

• No single non-Java language on the JVM honors them

Wednesday, November 16, 2011



What We Can Change
• Do not - use checked exceptions

• No single non-Java language on the JVM honors them

• Too prone to flow control by exception

Wednesday, November 16, 2011



What We Can Change
• Do not - use checked exceptions

• No single non-Java language on the JVM honors them

• Too prone to flow control by exception

• Terrible APIs

Wednesday, November 16, 2011



What We Can Change
• Do not - use checked exceptions

• No single non-Java language on the JVM honors them

• Too prone to flow control by exception

• Terrible APIs

• Do - have clean, expressive return types that indicate when 
something can go wrong that a consumer cares about

Wednesday, November 16, 2011



What We Can Change
• Do not - use checked exceptions

• No single non-Java language on the JVM honors them

• Too prone to flow control by exception

• Terrible APIs

• Do - have clean, expressive return types that indicate when 
something can go wrong that a consumer cares about

• Make exceptions truly Exceptional - no catch blocks

Wednesday, November 16, 2011



What We Can Change
• Do not - use checked exceptions

• No single non-Java language on the JVM honors them

• Too prone to flow control by exception

• Terrible APIs

• Do - have clean, expressive return types that indicate when 
something can go wrong that a consumer cares about

• Make exceptions truly Exceptional - no catch blocks

• Document what can go wrong in APIs

Wednesday, November 16, 2011



What We Can Change
• Do not - use checked exceptions

• No single non-Java language on the JVM honors them

• Too prone to flow control by exception

• Terrible APIs

• Do - have clean, expressive return types that indicate when 
something can go wrong that a consumer cares about

• Make exceptions truly Exceptional - no catch blocks

• Document what can go wrong in APIs

• Return tuples (GO’s value + error)

Wednesday, November 16, 2011



What We Can Change
• Do not - use checked exceptions

• No single non-Java language on the JVM honors them

• Too prone to flow control by exception

• Terrible APIs

• Do - have clean, expressive return types that indicate when 
something can go wrong that a consumer cares about

• Make exceptions truly Exceptional - no catch blocks

• Document what can go wrong in APIs

• Return tuples (GO’s value + error)

• Google language design and C++ standards

Wednesday, November 16, 2011



What We Can Change

Wednesday, November 16, 2011



What We Can Change
• Do - monitor every single thing you may find interesting

Wednesday, November 16, 2011



What We Can Change
• Do - monitor every single thing you may find interesting

• Metrics and statistics are critical - 50th, 90th, 99th percentiles

Wednesday, November 16, 2011



What We Can Change
• Do - monitor every single thing you may find interesting

• Metrics and statistics are critical - 50th, 90th, 99th percentiles

• Log files still matter - metrics and statistics need context

Wednesday, November 16, 2011



What We Can Change
• Do - monitor every single thing you may find interesting

• Metrics and statistics are critical - 50th, 90th, 99th percentiles

• Log files still matter - metrics and statistics need context

• Do not - monitor JMX directly 

Wednesday, November 16, 2011



What We Can Change
• Do - monitor every single thing you may find interesting

• Metrics and statistics are critical - 50th, 90th, 99th percentiles

• Log files still matter - metrics and statistics need context

• Do not - monitor JMX directly 

• Most FOSS platforms are terrible at this, Most commercial 
ones too

Wednesday, November 16, 2011



What We Can Change
• Do - monitor every single thing you may find interesting

• Metrics and statistics are critical - 50th, 90th, 99th percentiles

• Log files still matter - metrics and statistics need context

• Do not - monitor JMX directly 

• Most FOSS platforms are terrible at this, Most commercial 
ones too

• JConsole is an awesome tool but not a monitoring or alerting 
platform

Wednesday, November 16, 2011



What We Can Change
• Do - monitor every single thing you may find interesting

• Metrics and statistics are critical - 50th, 90th, 99th percentiles

• Log files still matter - metrics and statistics need context

• Do not - monitor JMX directly 

• Most FOSS platforms are terrible at this, Most commercial 
ones too

• JConsole is an awesome tool but not a monitoring or alerting 
platform

• Do not - Assume “I can just hook up a profiler later”

Wednesday, November 16, 2011



What We Can Change
• Do - monitor every single thing you may find interesting

• Metrics and statistics are critical - 50th, 90th, 99th percentiles

• Log files still matter - metrics and statistics need context

• Do not - monitor JMX directly 

• Most FOSS platforms are terrible at this, Most commercial 
ones too

• JConsole is an awesome tool but not a monitoring or alerting 
platform

• Do not - Assume “I can just hook up a profiler later”

• Do not - Worry about performance of these things

Wednesday, November 16, 2011



What We Can’t Change

• No first class functions

• Lambda expressions

• Long GC Pauses

• Bad LCD choices

• Two reflections operations on private fields to get an FD? 
Really?

• Spawning a process is painful compared to Python

• Type erasure

Wednesday, November 16, 2011



Inspirations

• Stephan Schmidt: http://codemonkeyism.com/
generation-java-programming-style/

• https://github.com/technomancy/clojure-http-client/blob/
master/src/clojure_http/client.clj

• My Python Co-workers

Wednesday, November 16, 2011

http://codemonkeyism.com/generation-java-programming-style/
http://codemonkeyism.com/generation-java-programming-style/
http://codemonkeyism.com/generation-java-programming-style/
http://codemonkeyism.com/generation-java-programming-style/
https://github.com/technomancy/clojure-http-client/blob/master/src/clojure_http/client.clj
https://github.com/technomancy/clojure-http-client/blob/master/src/clojure_http/client.clj
https://github.com/technomancy/clojure-http-client/blob/master/src/clojure_http/client.clj
https://github.com/technomancy/clojure-http-client/blob/master/src/clojure_http/client.clj


Thanks!

• Urban Airship: http://urbanairship.com/

• We’re hiring! http://urbanairship.com/company/jobs/

• Me @eonnen or erik at ☝

Wednesday, November 16, 2011

http://urbanairship.com/
http://urbanairship.com/
http://urbanairship.com/company/jobs/
http://urbanairship.com/company/jobs/

