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About Me

• Director of Architecture at Urban Airship (1 year)

• Previously Principal Engineer at Jive Software (3 years)

• 13 years writing Java, Python, C++

• Decent amount of hacking in Scala, Clojure, Ruby
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Caveats 

• I like lots of things about Scala, Clojure and Groovy

• I am not a programming language student, author or 
expert

• I am a practitioner

• Write lots of code quickly with good tools

• Move quickly when troubleshooting production code

• Move quickly when re-engaging with code 
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In this Talk

• About Urban Airship

• Java at Urban Airship

• Java and the JVM

• Dat Tool

• Come at me Troll!

• What do we need to improve?

• What does the language need to improve?
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What is an Urban Airship?

• Hosting for mobile services that developers should not 
build themselves

• Unified API for services across platforms

• SLAs for throughput, latency
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FACT

• Over 50 Java services in production

• HTTP endpoints

• Databases

• Message routing and delivery

• Large scale socket management using NIO

• Large scale data analysis

• We also eschew most “Enterprise” Java

• Everything in this talk we practice (and it works 
really well for us)
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FACT

46%

28%

3%

21%
2%

A Day in UA Engineering

New Feature Development
Sustaining Engineering
IRC Tomfoolery
Production Support
Beer/Pong
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Why Use The JVM?

• Fast. 

• Networking, disk I/O, maths

• Unless the GC is running :(

• Consistent, coherent memory model and concurrency - no 
“undefined behavior”

• Scalable NIO

• Threading, with a clean signal and interrupt handling 

• Introspect the runtime with little to no impact

• Snapshot the runtime under duress and analyze later

• But - none of these are Java-specific
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Why Java on the JVM?

• There are many hammers available

• All are good at something

• They are almost all interesting

• Not all are OK at everything
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Why Java on the JVM?

• Java as a language is inherently simple - WYSIWYG (mostly)

• Class behaviors are known by reading class code

• No multiple inheritance

• No monkey patching or trait collision rules to memorize

• No hacking the global namespace or meta class munging

• No duck typing or hidden type coercion

• Favors principle of least astonishment

“When you specifically try to dumb down good ideas for the 
masses, you reveal your contempt of said masses. Case 
study: Java.” - David Hansson
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Why Java on the JVM?
• The tools

• People have mixed reactions to refactoring tools

• IDEs starting to “learn”

• Find Usages

• The ecosystem

• One of if not the largest collections of FOSS libraries in 
existence

• No language impedance
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Dat Tool

• Our job as developers is to implement something of 
business value

• Things that make us more productive are good

• It’s OK to use tools to help you build things if they 
improve your productivity and further the roles of a 
developer

• Most IDEs are completely misunderstood by someone 
who has never tried them - “I would miss my modal 
editing”
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Come at me Troll!

But Java makes me type so much and that hurts my 
delicate hands!

• val numbers = Array[Integer](1,2,3,4)

• val numbers = Array(1,2,3,4)

• int[] numbers = new int[]{1,2,3,4};

Hey, that example is not fair!

• val str = “SPORTS!”

• final String str = “SPORTS!”;
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Come at me Troll!

But Java has soooo much line noise it’s hard to read!

• Stop pounding the nail with your head

• The human brain simply doesn’t work like that
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What We Can Change
• Java gets a bad rap, often for baggage in the ecosystem as a 

whole rather than the language specifically

• Some of this is due to big vendors in the space

• Some of it is because of the bloat

• But usually, it’s because we Java developers learn too slowly 
from things going on around us and get stuck in our ways
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What We Can Change
• Do not - view the world as a pattern waiting to happen

• Patterns, Enterprise Patterns, Anti-patterns and please yes, 
buy my book

• Do - get your job done

• Your business sponsors don’t care that you used 
FlyweightSingletonFactoryDelegateVisitor.java

• Of course, some usage is fine but focus on writing code - 
patterns don’t define correctness
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What We Can Change
• Do not - be afraid to have non-domain code in your code

• If latency to a system matters, measure that explicitly and 
overtly

• Be tempted into talk of AoP and cross-cutting concerns - your 
job isn’t just coding, it’s also sustaining and troubleshooting

• Concurrency doesn’t align w/ business concerns anyway

• Business domain doesn’t have “logs” but OPS needs to

• Do - leverage proven, simple libraries to help

• Coda Hale’s metrics library out of Yammer is essential

• Log4J, SLF4J, lots of good choices
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What We Can Change
• Do - learn from Erlang’s immutable data structures

• Move data using immutable models

• Fast, efficient, easy to reason about, thread safe

• Easy to put down the wire (Jackson, PBs) or into a schema-
less store

• Just properties, no getFoo

• No behaviors

• Do not - assume your classes need to model “real world” things

• A class doesn’t exist in the “real world”, don’t try and make it 
look like that

• Bob doesn’t have a save() method
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What We Can Change
• Do - create coarse grained, transaction-aligned APIs

• Leave no ambiguity about what impact an operation has on a 
back-end data store

• Measure latency to external services

• Easier to reason about concurrency (implementation and 
consumption)

• Go’s behavior separate from data

• Do not - use magic, code generating systems that hide transactions 
across APIs

• Leaky abstraction - you call a method, a TXN happens

• When performance suffers, you will want to know what is going on 
but can’t
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What We Can Change
• Do - create coarse grained, transaction-aligned APIs operating on 

immutable models

• Learn from Go’s keeping operations separate from data

• Return clones of data but nothing that has ties back in to a data 
store

• Easier to reason about, no ambiguity, pass as messages

• Do not - use magic, code generating systems that hide transactions 
across APIs

• A class doesn’t exist in the “real world”, don’t try and make it 
look like the real world

• Bob doesn’t have a save() method 

• Nest models in behaviors, in models in behaviors
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What We Can Change
• Do not - be afraid to write SQL or actually new an object

• Executing an SQL query is about the easiest thing you can do

• Mapping it to some data isn’t all that hard either

• Test it and move on

• Do - question configuration complexity and network abstractions

• If you go to the wire, that should be in your face

• XML configurations are an immediate indicator of impending 
complexity

• Realize IoC is not in and of itself a bad thing but you don’t 
need a framework to accomplish it
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What We Can Change
• Do not - use XML for anything. Ever.

• XML is pretty much good at nothing other than cementing 
unnecessary complexity at every level

• XML is not code!

• Do - use simple, standard mechanisms

• For configuration files, use properties files

• Easier to use in modern automation environments like 
Puppet

• Commons Config rocks

• For wire data, use PBs or JSON
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What We Can Change
• Do not - accept the “Enterprise” mentality

• Just say no to EARs, EJBs, and mostly WARs

• More XML, complex build process, complex deploy process

• Generally prohibit important things

• Not needed for scale

• Do - write small, discrete, stand-alone services

• Easier to operate

• Easier to reason about

• Strive for consistent approaches to all Java services
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What We Can Change
• Do - stop making web development so complicated

• Conventional approaches are too difficult, especially for APIs

• Consider Play or simply just embedding Jetty

• Embedding Jetty takes 16 lines of real code, add Jersey 
Annotations for fast, strongly typed HTTP endpoints and profit!

• Do not - assume you need a WAR in a container to deliver or 
scale

• Sites of massive scale succeed without these mechanisms

• Big vendors push a false sense of security
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What We Can Change
• Do - abuse final

• Simplifies closures, predicates, etc.

• Avoid public APIs relying on subclassing

• Clear expression of intent - you shall not change!

• Do not - do it for performance reasons

• Your code may perform better but that’s not the point

• Fall victim to the maybe extend effect
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What We Can Change
• Do not - use checked exceptions

• No single non-Java language on the JVM honors them

• Too prone to flow control by exception

• Terrible APIs

• Do - have clean, expressive return types that indicate when 
something can go wrong that a consumer cares about

• Make exceptions truly Exceptional - no catch blocks

• Document what can go wrong in APIs

• Return tuples (GO’s value + error)

• Google language design and C++ standards
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What We Can Change
• Do - monitor every single thing you may find interesting

• Metrics and statistics are critical - 50th, 90th, 99th percentiles

• Log files still matter - metrics and statistics need context

• Do not - monitor JMX directly 

• Most FOSS platforms are terrible at this, Most commercial 
ones too

• JConsole is an awesome tool but not a monitoring or alerting 
platform

• Do not - Assume “I can just hook up a profiler later”

• Do not - Worry about performance of these things
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What We Can’t Change

• No first class functions

• Lambda expressions

• Long GC Pauses

• Bad LCD choices

• Two reflections operations on private fields to get an FD? 
Really?

• Spawning a process is painful compared to Python

• Type erasure
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Inspirations

• Stephan Schmidt: http://codemonkeyism.com/
generation-java-programming-style/

• https://github.com/technomancy/clojure-http-client/blob/
master/src/clojure_http/client.clj

• My Python Co-workers
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Thanks!

• Urban Airship: http://urbanairship.com/

• We’re hiring! http://urbanairship.com/company/jobs/

• Me @eonnen or erik at ☝
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