
Uptime in High Volume Messaging 
Systems — Lessons Learned

QConSF, November 2011

Erik Onnen

Thursday, November 17, 2011



About Me

• Director of Architecture and Delivery at Urban Airship

• Previously Principal Engineer at Jive Software

• 13 years writing Java, Python, C++ in highly distributed 
systems

Thursday, November 17, 2011



In this Talk

• About Urban Airship and Lean

• Architecture Overview

• Key Learnings - Architecture, Engineering, Operations

Thursday, November 17, 2011



What is an Urban Airship?

• Hosting for mobile services that developers should not 
build themselves

• Unified API for services across platforms

• Push, IAP, Entitlements, Content Delivery all at scale

• SLAs for throughput, latency

Thursday, November 17, 2011



UA Is a Lean Company

Thursday, November 17, 2011



UA Is a Lean Company

• Specifically, UA is a Lean Startup

Thursday, November 17, 2011



UA Is a Lean Company

• Specifically, UA is a Lean Startup

• From Wikipedia:

• Use of FOSS, employment of Agile Techniques

• “Ferocious customer-centric rapid iteration, as 
exemplified by the Customer Development process”

Thursday, November 17, 2011

http://en.wikipedia.org/wiki/Steven_Gary_Blank#Customer_Development
http://en.wikipedia.org/wiki/Steven_Gary_Blank#Customer_Development


UA Is a Lean Company

• Specifically, UA is a Lean Startup

• From Wikipedia:

• Use of FOSS, employment of Agile Techniques

• “Ferocious customer-centric rapid iteration, as 
exemplified by the Customer Development process”

• Attention to continuous improvement

Thursday, November 17, 2011

http://en.wikipedia.org/wiki/Steven_Gary_Blank#Customer_Development
http://en.wikipedia.org/wiki/Steven_Gary_Blank#Customer_Development


UA Is a Lean Company

• Specifically, UA is a Lean Startup

• From Wikipedia:

• Use of FOSS, employment of Agile Techniques

• “Ferocious customer-centric rapid iteration, as 
exemplified by the Customer Development process”

• Attention to continuous improvement

• Value the elimination of waste

Thursday, November 17, 2011

http://en.wikipedia.org/wiki/Steven_Gary_Blank#Customer_Development
http://en.wikipedia.org/wiki/Steven_Gary_Blank#Customer_Development


UA Is a Lean Company

• Specifically, UA is a Lean Startup

• From Wikipedia:

• Use of FOSS, employment of Agile Techniques

• “Ferocious customer-centric rapid iteration, as 
exemplified by the Customer Development process”

• Attention to continuous improvement

• Value the elimination of waste

• Transparent, open processes

Thursday, November 17, 2011

http://en.wikipedia.org/wiki/Steven_Gary_Blank#Customer_Development
http://en.wikipedia.org/wiki/Steven_Gary_Blank#Customer_Development


UA Is a Lean Company

• Specifically, UA is a Lean Startup

• From Wikipedia:

• Use of FOSS, employment of Agile Techniques

• “Ferocious customer-centric rapid iteration, as 
exemplified by the Customer Development process”

• Attention to continuous improvement

• Value the elimination of waste

• Transparent, open processes

• Doesn’t apply to just Engineering and Product - also 
Operations and Architecture

Thursday, November 17, 2011

http://en.wikipedia.org/wiki/Steven_Gary_Blank#Customer_Development
http://en.wikipedia.org/wiki/Steven_Gary_Blank#Customer_Development


UA By The Numbers

Thursday, November 17, 2011



UA By The Numbers

• > 20K active developers

Thursday, November 17, 2011



UA By The Numbers

• > 20K active developers

• Over 300 million active application installs use our APIs 
across > 170 million unique devices

Thursday, November 17, 2011



UA By The Numbers

• > 20K active developers

• Over 300 million active application installs use our APIs 
across > 170 million unique devices

• 10s of billions of API requests per month

Thursday, November 17, 2011



UA By The Numbers

• > 20K active developers

• Over 300 million active application installs use our APIs 
across > 170 million unique devices

• 10s of billions of API requests per month

• 10 million direct socket connections to our servers

Thursday, November 17, 2011



UA By The Numbers

• > 20K active developers

• Over 300 million active application installs use our APIs 
across > 170 million unique devices

• 10s of billions of API requests per month

• 10 million direct socket connections to our servers

• > 50 TB worth of analytics data

Thursday, November 17, 2011



UA By The Numbers

• > 20K active developers

• Over 300 million active application installs use our APIs 
across > 170 million unique devices

• 10s of billions of API requests per month

• 10 million direct socket connections to our servers

• > 50 TB worth of analytics data

• 30 Engineers, 5 Operations Engineers

Thursday, November 17, 2011



Obligatory Architecture Slide

Thursday, November 17, 2011



Obligatory Architecture Slide

Thursday, November 17, 2011



Architecture in Context

Thursday, November 17, 2011



Architecture in Context

Thursday, November 17, 2011



Architecture in Context

Build and Sustain

Thursday, November 17, 2011



Architecture in Context

Build and Sustain Deploy and Sustain

Thursday, November 17, 2011



Architecture in Context

Build and Sustain Deploy and Sustain

Principles, Guidance
and Strategy

Thursday, November 17, 2011



Architecture - General Principles

Thursday, November 17, 2011



Architecture - General Principles

• Keep everyone moving in the same direction

Thursday, November 17, 2011



Architecture - General Principles

• Keep everyone moving in the same direction

• Help discrete teams understand how to interact

Thursday, November 17, 2011



Architecture - General Principles

• Keep everyone moving in the same direction

• Help discrete teams understand how to interact

• Think in terms of small, discrete services

Thursday, November 17, 2011



Architecture - General Principles

• Keep everyone moving in the same direction

• Help discrete teams understand how to interact

• Think in terms of small, discrete services

• Continuous capacity planning based on real data

Thursday, November 17, 2011



Architecture - General Principles

• Keep everyone moving in the same direction

• Help discrete teams understand how to interact

• Think in terms of small, discrete services

• Continuous capacity planning based on real data

• Avoid local optimizations in decision making

Thursday, November 17, 2011



Architecture - General Principles

• Keep everyone moving in the same direction

• Help discrete teams understand how to interact

• Think in terms of small, discrete services

• Continuous capacity planning based on real data

• Avoid local optimizations in decision making

Thursday, November 17, 2011



Architecture - Services

Thursday, November 17, 2011



Architecture - Services

• Trending towards a service-based architecture

Thursday, November 17, 2011



Architecture - Services

• Trending towards a service-based architecture

• Critical traits of a service:

Thursday, November 17, 2011



Architecture - Services

• Trending towards a service-based architecture

• Critical traits of a service:

• Minimal exposed functionality

Thursday, November 17, 2011



Architecture - Services

• Trending towards a service-based architecture

• Critical traits of a service:

• Minimal exposed functionality

• Smallest reasonable surface area to the API

Thursday, November 17, 2011



Architecture - Services

• Trending towards a service-based architecture

• Critical traits of a service:

• Minimal exposed functionality

• Smallest reasonable surface area to the API

• Operate on one type of data and do it well

Thursday, November 17, 2011



Architecture - Services

• Trending towards a service-based architecture

• Critical traits of a service:

• Minimal exposed functionality

• Smallest reasonable surface area to the API

• Operate on one type of data and do it well

• Simple to operate - start/stop/status

Thursday, November 17, 2011



Architecture - Services

• Trending towards a service-based architecture

• Critical traits of a service:

• Minimal exposed functionality

• Smallest reasonable surface area to the API

• Operate on one type of data and do it well

• Simple to operate - start/stop/status

• Over exposure of metrics and statistics

Thursday, November 17, 2011



Architecture - Services

• Trending towards a service-based architecture

• Critical traits of a service:

• Minimal exposed functionality

• Smallest reasonable surface area to the API

• Operate on one type of data and do it well

• Simple to operate - start/stop/status

• Over exposure of metrics and statistics

• Discoverable via ZooKeeper (future)

Thursday, November 17, 2011



Architecture - Services cont.

Thursday, November 17, 2011



Architecture - Services cont.

• Critical traits of a service (continued):

Thursday, November 17, 2011



Architecture - Services cont.

• Critical traits of a service (continued):

• Zero visibility into inner workings of other services

Thursday, November 17, 2011



Architecture - Services cont.

• Critical traits of a service (continued):

• Zero visibility into inner workings of other services

• No shared storage mechanism across services

Thursday, November 17, 2011



Architecture - Services cont.

• Critical traits of a service (continued):

• Zero visibility into inner workings of other services

• No shared storage mechanism across services

• Minimize shared state - use ZooKeeper if absolutely 
necessary

Thursday, November 17, 2011



Architecture - Services cont.

• Critical traits of a service (continued):

• Zero visibility into inner workings of other services

• No shared storage mechanism across services

• Minimize shared state - use ZooKeeper if absolutely 
necessary

• Consistent logging, configuration

Thursday, November 17, 2011



Architecture - Services cont.

• Critical traits of a service (continued):

• Zero visibility into inner workings of other services

• No shared storage mechanism across services

• Minimize shared state - use ZooKeeper if absolutely 
necessary

• Consistent logging, configuration

• Consistent implementation idioms where reasonable

Thursday, November 17, 2011



Architecture - Services cont.

• Critical traits of a service (continued):

• Zero visibility into inner workings of other services

• No shared storage mechanism across services

• Minimize shared state - use ZooKeeper if absolutely 
necessary

• Consistent logging, configuration

• Consistent implementation idioms where reasonable

• Consistent message passing approaches

Thursday, November 17, 2011



Architecture - Services cont.

• Critical traits of a service (continued):

• Zero visibility into inner workings of other services

• No shared storage mechanism across services

• Minimize shared state - use ZooKeeper if absolutely 
necessary

• Consistent logging, configuration

• Consistent implementation idioms where reasonable

• Consistent message passing approaches

• Convention for on-disk layout and structure

Thursday, November 17, 2011



Architecture Waste Reduction

Thursday, November 17, 2011



Architecture Waste Reduction

• All back-end services are in Java and Python

Thursday, November 17, 2011



Architecture Waste Reduction

• All back-end services are in Java and Python

• All Java services are made to use a single set of operational 
scripts:

Thursday, November 17, 2011



Architecture Waste Reduction

• All back-end services are in Java and Python

• All Java services are made to use a single set of operational 
scripts:

• Same core behaviors for all java services

Thursday, November 17, 2011



Architecture Waste Reduction

• All back-end services are in Java and Python

• All Java services are made to use a single set of operational 
scripts:

• Same core behaviors for all java services

• Consistent logging behavior - app, GC and stdx

Thursday, November 17, 2011



Architecture Waste Reduction

• All back-end services are in Java and Python

• All Java services are made to use a single set of operational 
scripts:

• Same core behaviors for all java services

• Consistent logging behavior - app, GC and stdx

• Consistent thread dump

Thursday, November 17, 2011



Architecture Waste Reduction

• All back-end services are in Java and Python

• All Java services are made to use a single set of operational 
scripts:

• Same core behaviors for all java services

• Consistent logging behavior - app, GC and stdx

• Consistent thread dump

• Consistent heap dumps (1.6.0_25 significantly improved)

Thursday, November 17, 2011



Architecture Waste Reduction

• All back-end services are in Java and Python

• All Java services are made to use a single set of operational 
scripts:

• Same core behaviors for all java services

• Consistent logging behavior - app, GC and stdx

• Consistent thread dump

• Consistent heap dumps (1.6.0_25 significantly improved)

• Each service runs as a system user

Thursday, November 17, 2011



Architecture Waste Reduction

• All back-end services are in Java and Python

• All Java services are made to use a single set of operational 
scripts:

• Same core behaviors for all java services

• Consistent logging behavior - app, GC and stdx

• Consistent thread dump

• Consistent heap dumps (1.6.0_25 significantly improved)

• Each service runs as a system user

• Leveraged by init scripts

Thursday, November 17, 2011



Architecture Waste Reduction

Thursday, November 17, 2011



Architecture Waste Reduction

• Always look for new ways to eliminate waste

Thursday, November 17, 2011



Architecture Waste Reduction

• Always look for new ways to eliminate waste

• Architectural waste comes in many forms

Thursday, November 17, 2011



Architecture Waste Reduction

• Always look for new ways to eliminate waste

• Architectural waste comes in many forms

• Maintaining lots of data storage engines - PostgreSQL, 
MongoDB, Cassandra, HBase, etc.

Thursday, November 17, 2011



Architecture Waste Reduction

• Always look for new ways to eliminate waste

• Architectural waste comes in many forms

• Maintaining lots of data storage engines - PostgreSQL, 
MongoDB, Cassandra, HBase, etc.

• Using a complex, unfamiliar queuing system was wasteful

Thursday, November 17, 2011



Architecture Waste Reduction

• Always look for new ways to eliminate waste

• Architectural waste comes in many forms

• Maintaining lots of data storage engines - PostgreSQL, 
MongoDB, Cassandra, HBase, etc.

• Using a complex, unfamiliar queuing system was wasteful

• Large diversity in approaches for managing services, worker 
processes, process management, etc.

Thursday, November 17, 2011



Architecture Waste Reduction

• Always look for new ways to eliminate waste

• Architectural waste comes in many forms

• Maintaining lots of data storage engines - PostgreSQL, 
MongoDB, Cassandra, HBase, etc.

• Using a complex, unfamiliar queuing system was wasteful

• Large diversity in approaches for managing services, worker 
processes, process management, etc.

• Developer silos - avoid the bus factor

Thursday, November 17, 2011



Architecture - Fault Domains

Thursday, November 17, 2011



Architecture - Fault Domains
• A Fault Domain is the full extent of peer services that are 

impacted by a single service outage - “If we lose the Database, 
the web site goes down”

Thursday, November 17, 2011



Architecture - Fault Domains
• A Fault Domain is the full extent of peer services that are 

impacted by a single service outage - “If we lose the Database, 
the web site goes down”

• When two services are completely unrelated, they should be in 
isolated fault domains if at all possible

Thursday, November 17, 2011



Architecture - Fault Domains
• A Fault Domain is the full extent of peer services that are 

impacted by a single service outage - “If we lose the Database, 
the web site goes down”

• When two services are completely unrelated, they should be in 
isolated fault domains if at all possible

Thursday, November 17, 2011



Architecture - Fault Domains
• A Fault Domain is the full extent of peer services that are 

impacted by a single service outage - “If we lose the Database, 
the web site goes down”

• When two services are completely unrelated, they should be in 
isolated fault domains if at all possible

Thursday, November 17, 2011



Architecture - Fault Domains
• A Fault Domain is the full extent of peer services that are 

impacted by a single service outage - “If we lose the Database, 
the web site goes down”

• When two services are completely unrelated, they should be in 
isolated fault domains if at all possible

Thursday, November 17, 2011



Architecture - Fault Domains
• A Fault Domain is the full extent of peer services that are 

impacted by a single service outage - “If we lose the Database, 
the web site goes down”

• When two services are completely unrelated, they should be in 
isolated fault domains if at all possible

Thursday, November 17, 2011



Architecture - Fault Domains
• A Fault Domain is the full extent of peer services that are 

impacted by a single service outage - “If we lose the Database, 
the web site goes down”

• When two services are completely unrelated, they should be in 
isolated fault domains if at all possible

Thursday, November 17, 2011



Architecture - Fault Domains

Thursday, November 17, 2011



Architecture - Fault Domains
• Fault domains extend beyond the firewall

Thursday, November 17, 2011



Architecture - Fault Domains
• Fault domains extend beyond the firewall

• Originally, all of our traffic came in through one HTTPs endpoint

Thursday, November 17, 2011



Architecture - Fault Domains
• Fault domains extend beyond the firewall

• Originally, all of our traffic came in through one HTTPs endpoint

• Weren’t able to separate our major classes of traffic:

Thursday, November 17, 2011



Architecture - Fault Domains
• Fault domains extend beyond the firewall

• Originally, all of our traffic came in through one HTTPs endpoint

• Weren’t able to separate our major classes of traffic:

• Device - check in, update state, disable services

Thursday, November 17, 2011



Architecture - Fault Domains
• Fault domains extend beyond the firewall

• Originally, all of our traffic came in through one HTTPs endpoint

• Weren’t able to separate our major classes of traffic:

• Device - check in, update state, disable services

• API - customers making requests, sending messages

Thursday, November 17, 2011



Architecture - Fault Domains
• Fault domains extend beyond the firewall

• Originally, all of our traffic came in through one HTTPs endpoint

• Weren’t able to separate our major classes of traffic:

• Device - check in, update state, disable services

• API - customers making requests, sending messages

• UI - standard web application, push composer, etc.

Thursday, November 17, 2011



Architecture - Fault Domains
• Fault domains extend beyond the firewall

• Originally, all of our traffic came in through one HTTPs endpoint

• Weren’t able to separate our major classes of traffic:

• Device - check in, update state, disable services

• API - customers making requests, sending messages

• UI - standard web application, push composer, etc.

• Large launches would strain the web UI

Thursday, November 17, 2011



Architecture - Fault Domains
• Fault domains extend beyond the firewall

• Originally, all of our traffic came in through one HTTPs endpoint

• Weren’t able to separate our major classes of traffic:

• Device - check in, update state, disable services

• API - customers making requests, sending messages

• UI - standard web application, push composer, etc.

• Large launches would strain the web UI

• Today - align fault domains w/ DNS, keep the distinct traffic 
classes separate

Thursday, November 17, 2011



Engineering at UA

46%

28%

3%

21%
2%

A Day in UA Engineering

New Feature Development
Sustaining Engineering
IRC Tomfoolery
Production Support
Beer/Pong

Thursday, November 17, 2011



Engineering for Iteration

Thursday, November 17, 2011



Engineering for Iteration

• Team of > 30 engineers

Thursday, November 17, 2011



Engineering for Iteration

• Team of > 30 engineers

• Organized around functional area

Thursday, November 17, 2011



Engineering for Iteration

• Team of > 30 engineers

• Organized around functional area

• Shortest iterations possible - MVP

Thursday, November 17, 2011



Engineering for Iteration

• Team of > 30 engineers

• Organized around functional area

• Shortest iterations possible - MVP

• We have no formal QA team - engineers are 
responsible for integration up through deploy

Thursday, November 17, 2011



Engineering for Iteration

• Team of > 30 engineers

• Organized around functional area

• Shortest iterations possible - MVP

• We have no formal QA team - engineers are 
responsible for integration up through deploy

• Frequently pair but it’s not institutionalized as a rule

Thursday, November 17, 2011



Engineering for Iteration

• Team of > 30 engineers

• Organized around functional area

• Shortest iterations possible - MVP

• We have no formal QA team - engineers are 
responsible for integration up through deploy

• Frequently pair but it’s not institutionalized as a rule

• Always leave the code better than how you found it

Thursday, November 17, 2011



Engineering for Iteration

• Team of > 30 engineers

• Organized around functional area

• Shortest iterations possible - MVP

• We have no formal QA team - engineers are 
responsible for integration up through deploy

• Frequently pair but it’s not institutionalized as a rule

• Always leave the code better than how you found it

• All bug fixes require a code review in Review Board

Thursday, November 17, 2011



Engineering for Iteration

• Team of > 30 engineers

• Organized around functional area

• Shortest iterations possible - MVP

• We have no formal QA team - engineers are 
responsible for integration up through deploy

• Frequently pair but it’s not institutionalized as a rule

• Always leave the code better than how you found it

• All bug fixes require a code review in Review Board

• Large new development undergoes a sit-down code 
and design review

Thursday, November 17, 2011



Engineering For Automation

Thursday, November 17, 2011



Engineering For Automation

• All code has three levels of testing:

Thursday, November 17, 2011



Engineering For Automation

• All code has three levels of testing:

• Unit - pure algorithmic testing (parsing, date maths, 
etc.)

Thursday, November 17, 2011



Engineering For Automation

• All code has three levels of testing:

• Unit - pure algorithmic testing (parsing, date maths, 
etc.)

• Functional - local testing of APIs, commonly with 
mock objects

Thursday, November 17, 2011



Engineering For Automation

• All code has three levels of testing:

• Unit - pure algorithmic testing (parsing, date maths, 
etc.)

• Functional - local testing of APIs, commonly with 
mock objects

• Integration - relies on external services (goes to the 
wire)

Thursday, November 17, 2011



Engineering For Automation

• All code has three levels of testing:

• Unit - pure algorithmic testing (parsing, date maths, 
etc.)

• Functional - local testing of APIs, commonly with 
mock objects

• Integration - relies on external services (goes to the 
wire)

• Commits are done to a main git branch that is run 
through automated unit and functional testing

Thursday, November 17, 2011



Engineering For Automation

• All code has three levels of testing:

• Unit - pure algorithmic testing (parsing, date maths, 
etc.)

• Functional - local testing of APIs, commonly with 
mock objects

• Integration - relies on external services (goes to the 
wire)

• Commits are done to a main git branch that is run 
through automated unit and functional testing

• No promotion to the production branch until tests 
pass

Thursday, November 17, 2011



Engineering For Simplicity

Thursday, November 17, 2011



Engineering For Simplicity

• Strive for simplicity and consistency

Thursday, November 17, 2011



Engineering For Simplicity

• Strive for simplicity and consistency

• Classes, methods - small and concise

Thursday, November 17, 2011



Engineering For Simplicity

• Strive for simplicity and consistency

• Classes, methods - small and concise

• Java services use no containers, no EJBs, no WARs

Thursday, November 17, 2011



Engineering For Simplicity

• Strive for simplicity and consistency

• Classes, methods - small and concise

• Java services use no containers, no EJBs, no WARs

• Vet new components and services 

Thursday, November 17, 2011



Engineering For Simplicity

• Strive for simplicity and consistency

• Classes, methods - small and concise

• Java services use no containers, no EJBs, no WARs

• Vet new components and services 

• Make sure the operational overhead is justified 
relative to benefits

Thursday, November 17, 2011



Engineering For Simplicity

• Strive for simplicity and consistency

• Classes, methods - small and concise

• Java services use no containers, no EJBs, no WARs

• Vet new components and services 

• Make sure the operational overhead is justified 
relative to benefits

• Make sure the sustaining overhead is justified and 
even achievable

Thursday, November 17, 2011



Engineering For Simplicity

• Strive for simplicity and consistency

• Classes, methods - small and concise

• Java services use no containers, no EJBs, no WARs

• Vet new components and services 

• Make sure the operational overhead is justified 
relative to benefits

• Make sure the sustaining overhead is justified and 
even achievable

• Do they perform as expected?

Thursday, November 17, 2011



Engineering For Simplicity

• Strive for simplicity and consistency

• Classes, methods - small and concise

• Java services use no containers, no EJBs, no WARs

• Vet new components and services 

• Make sure the operational overhead is justified 
relative to benefits

• Make sure the sustaining overhead is justified and 
even achievable

• Do they perform as expected?

• What dependencies do they bring?
Thursday, November 17, 2011



Engineering For Simplicity

Thursday, November 17, 2011



Engineering For Simplicity

• Clean, expected failure conditions in and out of 
services - exceptions are truly exceptional, not a 
means of communicating

Thursday, November 17, 2011



Engineering For Simplicity

• Clean, expected failure conditions in and out of 
services - exceptions are truly exceptional, not a 
means of communicating

• We write lots of concurrent code - don’t make it any 
harder than it needs to be

Thursday, November 17, 2011



Engineering For Simplicity

• Clean, expected failure conditions in and out of 
services - exceptions are truly exceptional, not a 
means of communicating

• We write lots of concurrent code - don’t make it any 
harder than it needs to be

• Favor immutable data structures

Thursday, November 17, 2011



Engineering For Simplicity

• Clean, expected failure conditions in and out of 
services - exceptions are truly exceptional, not a 
means of communicating

• We write lots of concurrent code - don’t make it any 
harder than it needs to be

• Favor immutable data structures

• new Foo(1,2,3) - YES!

Thursday, November 17, 2011



Engineering For Simplicity

• Clean, expected failure conditions in and out of 
services - exceptions are truly exceptional, not a 
means of communicating

• We write lots of concurrent code - don’t make it any 
harder than it needs to be

• Favor immutable data structures

• new Foo(1,2,3) - YES!

• new Foo().setOne(1).setTwo(2).setThree(3) - NO!

Thursday, November 17, 2011



Engineering For Simplicity

• Clean, expected failure conditions in and out of 
services - exceptions are truly exceptional, not a 
means of communicating

• We write lots of concurrent code - don’t make it any 
harder than it needs to be

• Favor immutable data structures

• new Foo(1,2,3) - YES!

• new Foo().setOne(1).setTwo(2).setThree(3) - NO!

• Avoid degenerate failure scenarios

Thursday, November 17, 2011



Engineering For Simplicity

• Clean, expected failure conditions in and out of 
services - exceptions are truly exceptional, not a 
means of communicating

• We write lots of concurrent code - don’t make it any 
harder than it needs to be

• Favor immutable data structures

• new Foo(1,2,3) - YES!

• new Foo().setOne(1).setTwo(2).setThree(3) - NO!

• Avoid degenerate failure scenarios

• Avoid asynchronous operations unless absolutely 
necessary

Thursday, November 17, 2011



Engineering For Transparency

Thursday, November 17, 2011



Engineering For Transparency

• Simplify metrics and statistics capture and do it 
everywhere

Thursday, November 17, 2011



Engineering For Transparency

• Simplify metrics and statistics capture and do it 
everywhere

• Capture latency for:

Thursday, November 17, 2011



Engineering For Transparency

• Simplify metrics and statistics capture and do it 
everywhere

• Capture latency for:

• Service critical operations

Thursday, November 17, 2011



Engineering For Transparency

• Simplify metrics and statistics capture and do it 
everywhere

• Capture latency for:

• Service critical operations

• External service invocation

Thursday, November 17, 2011



Engineering For Transparency

• Simplify metrics and statistics capture and do it 
everywhere

• Capture latency for:

• Service critical operations

• External service invocation

• Capture counters for:

Thursday, November 17, 2011



Engineering For Transparency

• Simplify metrics and statistics capture and do it 
everywhere

• Capture latency for:

• Service critical operations

• External service invocation

• Capture counters for:

• Service critical operations

Thursday, November 17, 2011



Engineering For Transparency

• Simplify metrics and statistics capture and do it 
everywhere

• Capture latency for:

• Service critical operations

• External service invocation

• Capture counters for:

• Service critical operations

• Service faults

Thursday, November 17, 2011



Putting it all Together

Thursday, November 17, 2011



Engineering For Operations

Thursday, November 17, 2011



Engineering For Operations

• Engineers, not Ops create, test deploy scripts

Thursday, November 17, 2011



Engineering For Operations

• Engineers, not Ops create, test deploy scripts

• Tools of the trade include Chef, Puppet and Fabric, 
Linux distro packages

Thursday, November 17, 2011



Engineering For Operations

• Engineers, not Ops create, test deploy scripts

• Tools of the trade include Chef, Puppet and Fabric, 
Linux distro packages

• Part of a work item being done includes its 
deployment automation

Thursday, November 17, 2011



Engineering For Operations

• Engineers, not Ops create, test deploy scripts

• Tools of the trade include Chef, Puppet and Fabric, 
Linux distro packages

• Part of a work item being done includes its 
deployment automation

• Engineers will commonly do service deployments and 
updates but always through the automation tools

Thursday, November 17, 2011



Engineering For Operations

• Engineers, not Ops create, test deploy scripts

• Tools of the trade include Chef, Puppet and Fabric, 
Linux distro packages

• Part of a work item being done includes its 
deployment automation

• Engineers will commonly do service deployments and 
updates but always through the automation tools

• Automation scripts always pull from a prod git branch 
after passing auto and manual tests

Thursday, November 17, 2011



Engineering For Operations

• Engineers, not Ops create, test deploy scripts

• Tools of the trade include Chef, Puppet and Fabric, 
Linux distro packages

• Part of a work item being done includes its 
deployment automation

• Engineers will commonly do service deployments and 
updates but always through the automation tools

• Automation scripts always pull from a prod git branch 
after passing auto and manual tests

• Put the mechanics on the helicopters

Thursday, November 17, 2011



Engineering For Responsiveness

Thursday, November 17, 2011



Engineering For Responsiveness

• Low latency, high throughput message paths use RPC

Thursday, November 17, 2011



Engineering For Responsiveness

• Low latency, high throughput message paths use RPC

• In-house design based on Netty and Google PBs

Thursday, November 17, 2011



Engineering For Responsiveness

• Low latency, high throughput message paths use RPC

• In-house design based on Netty and Google PBs

• Supports Sync, Async clients, journaling of messages

Thursday, November 17, 2011



Engineering For Responsiveness

• Low latency, high throughput message paths use RPC

• In-house design based on Netty and Google PBs

• Supports Sync, Async clients, journaling of messages

• Latency tolerant message paths

Thursday, November 17, 2011



Engineering For Responsiveness

• Low latency, high throughput message paths use RPC

• In-house design based on Netty and Google PBs

• Supports Sync, Async clients, journaling of messages

• Latency tolerant message paths

• Use beanstalkd for point-to-point messaging

Thursday, November 17, 2011



Engineering For Responsiveness

• Low latency, high throughput message paths use RPC

• In-house design based on Netty and Google PBs

• Supports Sync, Async clients, journaling of messages

• Latency tolerant message paths

• Use beanstalkd for point-to-point messaging

• Use Kafka for pub-sub messaging

Thursday, November 17, 2011



Engineering For Responsiveness

• Low latency, high throughput message paths use RPC

• In-house design based on Netty and Google PBs

• Supports Sync, Async clients, journaling of messages

• Latency tolerant message paths

• Use beanstalkd for point-to-point messaging

• Use Kafka for pub-sub messaging

• Generally favor pub-sub - easier to tack on listeners 
later - dovetails well into system-wide CEP 

Thursday, November 17, 2011



Engineering For Availability

Thursday, November 17, 2011



Engineering For Availability

• The Dark Launch - Roll out a functionality to a subset 
of customers

Thursday, November 17, 2011



Engineering For Availability

• The Dark Launch - Roll out a functionality to a subset 
of customers

• Take a new service in or out of production with no 
customer impact

Thursday, November 17, 2011



Engineering For Availability

• The Dark Launch - Roll out a functionality to a subset 
of customers

• Take a new service in or out of production with no 
customer impact

• Double writes, single reads, migration, cutover

Thursday, November 17, 2011



Engineering For Availability

• The Dark Launch - Roll out a functionality to a subset 
of customers

• Take a new service in or out of production with no 
customer impact

• Double writes, single reads, migration, cutover

• Load balanced HTTP with blended traffic to new 
and old service

Thursday, November 17, 2011



Engineering For Availability

• The Dark Launch - Roll out a functionality to a subset 
of customers

• Take a new service in or out of production with no 
customer impact

• Double writes, single reads, migration, cutover

• Load balanced HTTP with blended traffic to new 
and old service

• Service abstraction helps immensely

Thursday, November 17, 2011



Engineering For Availability

• The Dark Launch - Roll out a functionality to a subset 
of customers

• Take a new service in or out of production with no 
customer impact

• Double writes, single reads, migration, cutover

• Load balanced HTTP with blended traffic to new 
and old service

• Service abstraction helps immensely

• Requires extra discipline and careful thinking about 
how multiple versions of a thing coexist

Thursday, November 17, 2011



Eng. For Continuous Improvement

Thursday, November 17, 2011



Eng. For Continuous Improvement

• Lean’s 5 Whys when we have a customer-facing incident

Thursday, November 17, 2011



Eng. For Continuous Improvement

• Lean’s 5 Whys when we have a customer-facing incident

• Ask “Why” five times in an effort to get to a root cause

Thursday, November 17, 2011



Eng. For Continuous Improvement

• Lean’s 5 Whys when we have a customer-facing incident

• Ask “Why” five times in an effort to get to a root cause

• Make an Engineering or Ops investment proportional to 
the incident 

Thursday, November 17, 2011



Eng. For Continuous Improvement

• Lean’s 5 Whys when we have a customer-facing incident

• Ask “Why” five times in an effort to get to a root cause

• Make an Engineering or Ops investment proportional to 
the incident 

• Almost always results in improved monitoring

Thursday, November 17, 2011



Eng. For Continuous Improvement

• Lean’s 5 Whys when we have a customer-facing incident

• Ask “Why” five times in an effort to get to a root cause

• Make an Engineering or Ops investment proportional to 
the incident 

• Almost always results in improved monitoring

• Often improved testing and code quality

Thursday, November 17, 2011



Eng. For Continuous Improvement

• Lean’s 5 Whys when we have a customer-facing incident

• Ask “Why” five times in an effort to get to a root cause

• Make an Engineering or Ops investment proportional to 
the incident 

• Almost always results in improved monitoring

• Often improved testing and code quality

• Sometimes entire new services

Thursday, November 17, 2011



Eng. For Continuous Improvement

Thursday, November 17, 2011



Eng. For Continuous Improvement

Example 5 Whys - 13-JUN-2011 Postgres Slave Delay

Thursday, November 17, 2011

https://boca.urbanairship.com/display/eng/13-JUN-2011+Postgres+Slave+Delay+5+Why
https://boca.urbanairship.com/display/eng/13-JUN-2011+Postgres+Slave+Delay+5+Why


Eng. For Continuous Improvement

1.Why did we have a delay in replication? There was an open connection in 
"idle in transaction" state for three days.

2.Why was there an idle transaction? There was a reports ETL task loading 
all the data, and it was somewhat slow. While it did work in batches, it did not 
commit or roll back.

3.Why didn't we know about the delay in replication? The slave replication 
monitors were misconfigured and not reading the correct data.

4.Why were the replication monitors misconfigured? After the deploy into 
production they were not properly reset to the new hostnames.

5.Why did an idle transaction block replication? Developer 
misunderstanding of how query result paging worked relative to 
PostgreSQL transactions.

Example 5 Whys - 13-JUN-2011 Postgres Slave Delay

Thursday, November 17, 2011

https://boca.urbanairship.com/display/eng/13-JUN-2011+Postgres+Slave+Delay+5+Why
https://boca.urbanairship.com/display/eng/13-JUN-2011+Postgres+Slave+Delay+5+Why


Operations at UA

Thursday, November 17, 2011



Operations at UA

• Team of 5 operating > 100 servers

Thursday, November 17, 2011



Operations at UA

• Team of 5 operating > 100 servers

• Mostly bare metal

Thursday, November 17, 2011



Operations at UA

• Team of 5 operating > 100 servers

• Mostly bare metal

• EC2 for surge capacity

Thursday, November 17, 2011



Operations at UA

• Team of 5 operating > 100 servers

• Mostly bare metal

• EC2 for surge capacity

• We have no “DevOps”

Thursday, November 17, 2011



Operations at UA

• Team of 5 operating > 100 servers

• Mostly bare metal

• EC2 for surge capacity

• We have no “DevOps”

• Everybody does DevOps - Engineers, Support, Ops

Thursday, November 17, 2011



Operations at UA

• Team of 5 operating > 100 servers

• Mostly bare metal

• EC2 for surge capacity

• We have no “DevOps”

• Everybody does DevOps - Engineers, Support, Ops

• But not everybody does Ops

Thursday, November 17, 2011



Operations at UA

• Team of 5 operating > 100 servers

• Mostly bare metal

• EC2 for surge capacity

• We have no “DevOps”

• Everybody does DevOps - Engineers, Support, Ops

• But not everybody does Ops

• Responsible for monitoring, alerting, automation tools, 
security, SOP

Thursday, November 17, 2011



Operations at UA

• Team of 5 operating > 100 servers

• Mostly bare metal

• EC2 for surge capacity

• We have no “DevOps”

• Everybody does DevOps - Engineers, Support, Ops

• But not everybody does Ops

• Responsible for monitoring, alerting, automation tools, 
security, SOP

• First line of defense in on call rotation

Thursday, November 17, 2011



Operations For Transparency

Thursday, November 17, 2011



Operations For Transparency

• Measure everything, monitor important things

Thursday, November 17, 2011



Operations For Transparency

• Measure everything, monitor important things

• Every service exposes internal and external latency

Thursday, November 17, 2011



Operations For Transparency

• Measure everything, monitor important things

• Every service exposes internal and external latency

• Java agent exposes JMX via HTTP/JSON

Thursday, November 17, 2011



Operations For Transparency

• Measure everything, monitor important things

• Every service exposes internal and external latency

• Java agent exposes JMX via HTTP/JSON

• Python via custom “socket console”

Thursday, November 17, 2011



Operations For Transparency

• Measure everything, monitor important things

• Every service exposes internal and external latency

• Java agent exposes JMX via HTTP/JSON

• Python via custom “socket console”

• DRY - an operator needs to be L1 & L2 support - 
consistency is key

Thursday, November 17, 2011



Operations For Transparency

• Measure everything, monitor important things

• Every service exposes internal and external latency

• Java agent exposes JMX via HTTP/JSON

• Python via custom “socket console”

• DRY - an operator needs to be L1 & L2 support - 
consistency is key

• This has us to over 1200 services across > 100 servers 
and we’re still somewhat sane

Thursday, November 17, 2011



Ops. Continuous Improvement

Thursday, November 17, 2011



Ops. Continuous Improvement

• Company bootstrapped in EC2

Thursday, November 17, 2011



Ops. Continuous Improvement

• Company bootstrapped in EC2

• By Q1/Q2 2011- substantial growing pains with EC2

Thursday, November 17, 2011



Ops. Continuous Improvement

• Company bootstrapped in EC2

• By Q1/Q2 2011- substantial growing pains with EC2

• Erratic network latency

Thursday, November 17, 2011



Ops. Continuous Improvement

• Company bootstrapped in EC2

• By Q1/Q2 2011- substantial growing pains with EC2

• Erratic network latency

• Wide spread outages - EBS and ELB

Thursday, November 17, 2011



Ops. Continuous Improvement

• Company bootstrapped in EC2

• By Q1/Q2 2011- substantial growing pains with EC2

• Erratic network latency

• Wide spread outages - EBS and ELB

• Strange network behavior at scale

Thursday, November 17, 2011



Ops. Continuous Improvement

• Company bootstrapped in EC2

• By Q1/Q2 2011- substantial growing pains with EC2

• Erratic network latency

• Wide spread outages - EBS and ELB

• Strange network behavior at scale

• Database scale getting costly due to poor I/O

Thursday, November 17, 2011



Ops. Continuous Improvement

• Company bootstrapped in EC2

• By Q1/Q2 2011- substantial growing pains with EC2

• Erratic network latency

• Wide spread outages - EBS and ELB

• Strange network behavior at scale

• Database scale getting costly due to poor I/O

• Kernel + Hypervisor issues

Thursday, November 17, 2011



Ops. Continuous Improvement

• Company bootstrapped in EC2

• By Q1/Q2 2011- substantial growing pains with EC2

• Erratic network latency

• Wide spread outages - EBS and ELB

• Strange network behavior at scale

• Database scale getting costly due to poor I/O

• Kernel + Hypervisor issues

• Undocumented limitations - Network, VPC, ELB

Thursday, November 17, 2011



Ops. Continuous Improvement

Thursday, November 17, 2011



Ops. Continuous Improvement

• Step back, revisit the tradeoffs of being a cloud company

Thursday, November 17, 2011



Ops. Continuous Improvement

• Step back, revisit the tradeoffs of being a cloud company

• Research alternatives - initially MSPs, no co-lo

Thursday, November 17, 2011



Ops. Continuous Improvement

• Step back, revisit the tradeoffs of being a cloud company

• Research alternatives - initially MSPs, no co-lo

• Decide to go bare metal for cost, performance

Thursday, November 17, 2011



Ops. Continuous Improvement

• Step back, revisit the tradeoffs of being a cloud company

• Research alternatives - initially MSPs, no co-lo

• Decide to go bare metal for cost, performance

• One month of planning, one month of testing

Thursday, November 17, 2011



Ops. Continuous Improvement

• Step back, revisit the tradeoffs of being a cloud company

• Research alternatives - initially MSPs, no co-lo

• Decide to go bare metal for cost, performance

• One month of planning, one month of testing

• Keep the same automation approach across both 
environments during the transition

Thursday, November 17, 2011



Ops. Continuous Improvement

Thursday, November 17, 2011



Ops. Continuous Improvement

One night in Portland...

Thursday, November 17, 2011



Ops. Continuous Improvement

Thursday, November 17, 2011



Resulted in...

Ops. Continuous Improvement

Thursday, November 17, 2011



Resulted in...

Ops. Continuous Improvement

Thursday, November 17, 2011



Resulted in...

Ops. Continuous Improvement

Thursday, November 17, 2011



Ops. Continuous Improvement

0 K/s

100,000 K/s

200,000 K/s

300,000 K/s

400,000 K/s

Block Block Rewrite

Single Eph
EBS RAID 0
Eph RAID 0
Hard RAID 10

Sequential Block Writes

Thursday, November 17, 2011



Performance of Real CPUs - GC Effectiveness

0

75

150

225

300

MB Collected

ParNew GC Effectiveness

Bare Metal EC2 XL

Ops. Continuous Improvement

Thursday, November 17, 2011



Performance of Real CPUs - GC Performance

0

0.01

0.02

0.03

0.04

Collection Time (sec)

Mean Time ParNew GC

Bare Metal EC2 XL

Ops. Continuous Improvement

Thursday, November 17, 2011



Operations For Scale

Thursday, November 17, 2011



Operations For Scale

• Our capacity scale needs tend to come in fits and spurts

Thursday, November 17, 2011



Operations For Scale

• Our capacity scale needs tend to come in fits and spurts

• Successful launches of new apps

Thursday, November 17, 2011



Operations For Scale

• Our capacity scale needs tend to come in fits and spurts

• Successful launches of new apps

• Unexpected viral apps

Thursday, November 17, 2011



Operations For Scale

• Our capacity scale needs tend to come in fits and spurts

• Successful launches of new apps

• Unexpected viral apps

• Unexpected herd effects

Thursday, November 17, 2011



Operations For Scale

• Our capacity scale needs tend to come in fits and spurts

• Successful launches of new apps

• Unexpected viral apps

• Unexpected herd effects

Thursday, November 17, 2011



Operations For Scale

Thursday, November 17, 2011



Operations For Scale

• Worked with our MSP and Amazon towards an “Hybrid Cloud”

Thursday, November 17, 2011



Operations For Scale

• Worked with our MSP and Amazon towards an “Hybrid Cloud”

• Critical systems on bare metal

Thursday, November 17, 2011



Operations For Scale

• Worked with our MSP and Amazon towards an “Hybrid Cloud”

• Critical systems on bare metal

• Surge capacity on Amazon VPC - EC2 nodes on demand, when 
we need them

Thursday, November 17, 2011



Operations For Scale

• Worked with our MSP and Amazon towards an “Hybrid Cloud”

• Critical systems on bare metal

• Surge capacity on Amazon VPC - EC2 nodes on demand, when 
we need them

• Best of both worlds

Thursday, November 17, 2011



Operations For Scale

• Worked with our MSP and Amazon towards an “Hybrid Cloud”

• Critical systems on bare metal

• Surge capacity on Amazon VPC - EC2 nodes on demand, when 
we need them

• Best of both worlds

• Databases are happy

Thursday, November 17, 2011



Operations For Scale

• Worked with our MSP and Amazon towards an “Hybrid Cloud”

• Critical systems on bare metal

• Surge capacity on Amazon VPC - EC2 nodes on demand, when 
we need them

• Best of both worlds

• Databases are happy

• Extra CPU when we need it - currently using it for SSL offload

Thursday, November 17, 2011



Operations For Scale

Thursday, November 17, 2011



• Hybrid cloud is not always a panacea - the trials of Big 
Data

Operations For Scale

Thursday, November 17, 2011



• Hybrid cloud is not always a panacea - the trials of Big 
Data

• In September, some indexers started falling behind

Operations For Scale

Thursday, November 17, 2011



• Hybrid cloud is not always a panacea - the trials of Big 
Data

• In September, some indexers started falling behind

• No new HBase machines for several weeks

Operations For Scale

Thursday, November 17, 2011



• Hybrid cloud is not always a panacea - the trials of Big 
Data

• In September, some indexers started falling behind

• No new HBase machines for several weeks

• Spin up 10 new HBase Region nodes in EC2

Operations For Scale

Thursday, November 17, 2011



• Hybrid cloud is not always a panacea - the trials of Big 
Data

• In September, some indexers started falling behind

• No new HBase machines for several weeks

• Spin up 10 new HBase Region nodes in EC2

• Aggregate throughput actually went down

Operations For Scale

Thursday, November 17, 2011



• Hybrid cloud is not always a panacea - the trials of Big 
Data

• In September, some indexers started falling behind

• No new HBase machines for several weeks

• Spin up 10 new HBase Region nodes in EC2

• Aggregate throughput actually went down

• 400Mb network != 1Gb network

Operations For Scale

Thursday, November 17, 2011



• Hybrid cloud is not always a panacea - the trials of Big 
Data

• In September, some indexers started falling behind

• No new HBase machines for several weeks

• Spin up 10 new HBase Region nodes in EC2

• Aggregate throughput actually went down

• 400Mb network != 1Gb network

• EC2 I/O was so slow, it became the limiting factor

Operations For Scale

Thursday, November 17, 2011



Room For Improvement

Thursday, November 17, 2011



Room For Improvement

• Simulating scale for testing is hard, representative load 
difficult to achieve

Thursday, November 17, 2011



Room For Improvement

• Simulating scale for testing is hard, representative load 
difficult to achieve

• Automation improvements never end - you can never have 
enough but it’s difficult to make progress in an interrupt 
driven environment

Thursday, November 17, 2011



Room For Improvement

• Simulating scale for testing is hard, representative load 
difficult to achieve

• Automation improvements never end - you can never have 
enough but it’s difficult to make progress in an interrupt 
driven environment

• Having lots of services can make integration testing 
interesting

Thursday, November 17, 2011



Room For Improvement

• Simulating scale for testing is hard, representative load 
difficult to achieve

• Automation improvements never end - you can never have 
enough but it’s difficult to make progress in an interrupt 
driven environment

• Having lots of services can make integration testing 
interesting

• Balancing keeping engineers interested and need for 
specialization

Thursday, November 17, 2011



Key Mobile Learnings

Thursday, November 17, 2011



Key Mobile Learnings

• Device connectivity is extremely unreliable

Thursday, November 17, 2011



Key Mobile Learnings

• Device connectivity is extremely unreliable

• Carriers incentive is to conserve data

Thursday, November 17, 2011



Key Mobile Learnings

• Device connectivity is extremely unreliable

• Carriers incentive is to conserve data

• No visibility into iOS kernel

Thursday, November 17, 2011



Key Mobile Learnings

• Device connectivity is extremely unreliable

• Carriers incentive is to conserve data

• No visibility into iOS kernel

• Devices can be offline for a long time buffering data

Thursday, November 17, 2011



Key Mobile Learnings

• Device connectivity is extremely unreliable

• Carriers incentive is to conserve data

• No visibility into iOS kernel

• Devices can be offline for a long time buffering data

• Use devices as micro storage

Thursday, November 17, 2011



Key Mobile Learnings

• Device connectivity is extremely unreliable

• Carriers incentive is to conserve data

• No visibility into iOS kernel

• Devices can be offline for a long time buffering data

• Use devices as micro storage

• Client developers often don’t listen to us which can hurt

Thursday, November 17, 2011



Key Mobile Learnings

• Device connectivity is extremely unreliable

• Carriers incentive is to conserve data

• No visibility into iOS kernel

• Devices can be offline for a long time buffering data

• Use devices as micro storage

• Client developers often don’t listen to us which can hurt

• Customers often under estimate the size of their audience 
and the effectiveness of push notifications

Thursday, November 17, 2011



Key Mobile Learnings

• Device connectivity is extremely unreliable

• Carriers incentive is to conserve data

• No visibility into iOS kernel

• Devices can be offline for a long time buffering data

• Use devices as micro storage

• Client developers often don’t listen to us which can hurt

• Customers often under estimate the size of their audience 
and the effectiveness of push notifications

• Mobile is like browsers but worse

Thursday, November 17, 2011



Thanks!

• Urban Airship http://urbanairship.com/

• Me @eonnen or erik at ☝

• We’re hiring! http://urbanairship.com/company/jobs/

Thursday, November 17, 2011

http://urbanairship.com/
http://urbanairship.com/
http://urbanairship.com/company/jobs/
http://urbanairship.com/company/jobs/

