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How Much Do We Know?
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Fault Prediction System - Elaine J. Weyuker, Thomas J. Ostrand
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Models for Project Managers, to help
them decide where to apply effort.
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Research used 6 large projects built
or contracted by AT&T

e 300-500 KSLOC

2 yrsto |0 yrs

* 4-50 langs per system
* 3 month release cycle
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Validated the hypothesis that
distribution of faults across files is
Pareto:

> 80% faults are in < 20% of files
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Table 9-2. Percentage of faults in top 20% of files for previously studied

systems

System Final release (Final release % faults in top
files KLOC 20% files

Inventory 1950 538 83%

Provisioning 2308 438 83%

Voice Response 1888 329 75%

Maintenance Support A|/668 442 81%
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Inputs to Prediction Model (per file):

« LOC

* New file (y/n)?

* number of changes in release N-1
* number of changes in release N-2
* number of faults in release N-1

e programming language
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Experimented with (per file):

« Cumulative # of developers

* Recent # of developers (Release N-1)
 Number of new developers
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Experimented with (per file):

« Cumulative # of developers

* Recent # of developers (Release N-1)
 Number of new developers

Dev-based Inputs did not improve the model much
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How Effective Is Modularization? - Neil Thomas and Gail Murphy
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« Are most changes made to the code of a system during a single
bug fix or enhancement constrained to a single module?

« When a software developer makes a change to the code of a
system, must the developer consult code in other modules?

Do the patterns in the actual changes and modules consulted
suggest a different modular breakdown for a system?
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Evolution
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Change Locality

We begin our exploration with a simple question: are most changes
to the code constrained to a single module? Figure 21-5 shows a
histogram of the number of modules modified per change for each
system, and Table 21-4 presents some summary statistics.

Table 21-4. Number of modules affected by each change

Project

% changes affecting only one
module

Mean modules affec-
ted

Evolution|86.6% 1.243
Firefox [73.7% 1.577
Mylyn 69.7% 1.634
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The Open/Closed Principle

"software entities (classes, modules, functions,
etc.) should be open for extension, but closed for
modification"

- Bertrand Meyer
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OPEN CLOSED PRINCIPLE

Open Chest Surgery Is Not Needed When Putting On A Coat
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Clojure
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JUnit
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& File Churn vs c%mplexity in Clojure =
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i For each .java file, X is the the number of commits J‘.I
[ and Y is the total complexity of the file J
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Churn vs Complexity
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Churn vs Complexity

Complexity
o
s’

= R

® app/models

Churn

Highcharts.com

Wednesday, November 16, 2011



Churn vs Complexity
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A Method Lifeline
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Frequency of Inter-commit Intervals
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Frequency of Inter-commit Intervals
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Frequency of Inter-commit Intervals
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Frequency of Inter-commit Intervals
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Average Lines of Code Per Commit By Week
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Complexity Tolerance (Developer A)
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Complexity Tolerance (Developer B)
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Ownership Effect (all methods)
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Methods Ascending (5)
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Trending Methods

trending_methods events
method_events(events).select {lel e.status == :changed } \
.group_by {lel month_from_date(e.date) } \
E0Na\
.last[1] \

. freq_by(&:method_name)
.sort_by {|_,count| -count } \
.take(19)
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Classes By Closure Date

classes_by_closure events
class_names = method_events(events).map(&:class_name).uniq
classes = Hash[class_names.zip([Time.now] * class_names.length)]

method_events(events).each {lel classes[e.class_name] = e.date }
classes.to_a.sort_by {|_,datel date }
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Temporal Correlation of Class Changes

temporal_correlation_of_classes events
events.group_by {lel [e.day,e.committer]} \
.values \
.map {lel e.map(&:class_name).uniq.combination(2).to_a } \
.flatten(1l) \

.pairs \
.freq_by {lel e } \
.sort_by {lpl| p[1] }
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Behavioral Economics
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If you want parole, have your case heard right after lunch

By Kate Shaw | Last updated 4 days ago

Between the courtroom antics of lawyers, witnesses,
and jurors, reason doesn't always prevail in our legal
system. But judges are trained to be impartial,
consistent, and rational, and make deliberate decisions
based on the case in front of them, right? Actually no,
according to a new study in PNAS, which shows that
judges are subject to the same whims and lapses in
judgment as the rest of us.

The authors examined over 1,000 parole decisions
made by eight judges in Israel over a 10-month period.
In each parole request, a prisoner appeared in front of
a judge, and the judge could either accept or deny the request. The judges heard between 14 and 35 of these
cases per day, separated into three distinct sessions. The first session ran from the beginning of the day until
a mid-morning snack break, the second lasted from the snack break until a late lunch, and the third lasted
from lunch until the end of the day.

Overall, judges were much more likely to accept prisoners’ requests for parole at the beginning of the day than
the at end. Moreover, a prisoner's chances of receiving parole more than doubled if his case was heard at the
beginning of one of the three sessions, rather than later on in the session. More specifically, it was the number
of rulings that a judge made, rather than the time elapsed in a session, that significantly affected later
decisions. Every single judge in the sample followed this pattern.
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Judgment day
Favourable rulings by parole boards, %
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s it easier to add code to an existing
method or to add a new method?
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Is it easier to add a method to an
existing class or to add it a new class!?
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We should not be surprised by what
we see.
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Commits By Hour
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Commits By Minute
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Method and Spec Changes Per Hour of Day
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Another Method

time
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Method Complexity Trends in a Class
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Code Blindness
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Walking Out of Code Blindness
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Walking Out of Code Blindness

= | Toullgnorance
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Walking Out of Code Blindness
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Organization Success Metrics
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There is nothing more abstract
than 4 (except maybe 5).




Walking Out of Code Blindness
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Walking Out of Code Blindness

Qualitatively Assessing

— = Lifecycle Managing
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Walking Out of Code Blindness
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Conway’s Law
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— added - changed ~ deleted
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Added Complexity Over Time
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Peter Provost - The Bufferfly Effect

Wednesday, November 16, 2011



WabisSabvi

for Artists,
Designers,
Poets &

Philosophers
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