@W @W%ézm

Embracing the Real Behind the Ideal

Michael Feathers
Groupon

Wednesday, November 16, 2011

How Much Do We Know?

Wednesday, November 16, 2011

Wednesday, November 16, 2011

Insenv/In/Pracrice

Making Software

What Really Works, and Why We Believe it

Edited by
O'REILLY" Andy Oram & Greg Wilson

Wednesday, November 16, 2011

Fault Prediction System - Elaine J. Weyuker, Thomas J. Ostrand

Wednesday, November 16, 2011

Models for Project Managers, to help
them decide where to apply effort.

Wednesday, November 16, 2011

Research used 6 large projects built
or contracted by AT&T

e 300-500 KSLOC

2 yrsto |0 yrs

* 4-50 langs per system
* 3 month release cycle

Wednesday, November 16, 2011

Validated the hypothesis that
distribution of faults across files is
Pareto:

> 80% faults are in < 20% of files

Wednesday, November 16, 2011

Table 9-2. Percentage of faults in top 20% of files for previously studied

systems

System Final release (Final release % faults in top
files KLOC 20% files

Inventory 1950 538 83%

Provisioning 2308 438 83%

Voice Response 1888 329 75%

Maintenance Support A|/668 442 81%

Wednesday, November 16, 2011

Inputs to Prediction Model (per file):

« LOC

* New file (y/n)?

* number of changes in release N-1
* number of changes in release N-2
* number of faults in release N-1

e programming language

Wednesday, November 16, 2011

Experimented with (per file):

« Cumulative # of developers

* Recent # of developers (Release N-1)
 Number of new developers

Wednesday, November 16, 2011

Experimented with (per file):

« Cumulative # of developers

* Recent # of developers (Release N-1)
 Number of new developers

Dev-based Inputs did not improve the model much

Wednesday, November 16, 2011

How Effective Is Modularization? - Neil Thomas and Gail Murphy

Wednesday, November 16, 2011

« Are most changes made to the code of a system during a single
bug fix or enhancement constrained to a single module?

« When a software developer makes a change to the code of a
system, must the developer consult code in other modules?

Do the patterns in the actual changes and modules consulted
suggest a different modular breakdown for a system?

Wednesday, November 16, 2011

Evolution

10,0001

2006

2004

2010

2009

2008

2007

2005

2003

2002

Firefox

Mylyn

g

L

0 =

»

afpfn
a :.": :f’h : ‘,,m’ w o s
2007

N % a0
a

'PEZ

N
258,

-
P
oo,
e |
. |
& |
% ay 4 ”
e y |
n,.. & |
g° |
ol © |
3)w,mw
®0® ~

%

f0

o
&

Wednesday, November 16, 2011

800 -

600 -

200 -

S S SSOUS PSPPI e —

10
Modules consulted

Wednesday, November 16, 2011

Evolution Firefox

1500 |

Changes
:

500 |

4 6
Modules

D -
[S
OO0 -
e
(=]

Wednesday, November 16, 2011

Change Locality

We begin our exploration with a simple question: are most changes
to the code constrained to a single module? Figure 21-5 shows a
histogram of the number of modules modified per change for each
system, and Table 21-4 presents some summary statistics.

Table 21-4. Number of modules affected by each change

Project

% changes affecting only one
module

Mean modules affec-
ted

Evolution|86.6% 1.243
Firefox [73.7% 1.577
Mylyn 69.7% 1.634

Wednesday, November 16, 2011

Wednesday, November 16, 2011

The Open/Closed Principle

"software entities (classes, modules, functions,
etc.) should be open for extension, but closed for
modification"

- Bertrand Meyer

Wednesday, November 16, 2011

OPEN CLOSED PRINCIPLE

Open Chest Surgery Is Not Needed When Putting On A Coat

Wednesday, November 16, 2011

Clojure

400

300

200

of commits

100

files

Wednesday, November 16, 2011

Fithesse

300

225

150

of commits

75

files

Wednesday, November 16, 2011

JUnit

70.0

52.5

35.0

of commits

17.5

files

Wednesday, November 16, 2011

700

525

175

Wednesday, November 16, 2011

& File Churn vs c%mplexity in Clojure =

1500

1125
D750 + 0

s +
375 o - =
i ¥ . 2
*4
0 1

0 0 100 0200 300 40(]:|

i For each .java file, X is the the number of commits J‘.I
[and Y is the total complexity of the file J

Wednesday, November 16, 2011

Churn vs Complexity

(=]
z
x B
o
= £ & w»
E (=) ® ° <]
o
o *
¢ = *
S o °
Churn

® app/models @ app/controllers m app/helpers A lib v e : & - ® & t ¥) ® S

® & 8 v £ e ¢ & H A v . @ : © 31 & A R v

@ @ B & v ® ‘

\ Highcharts.com

Wednesday, November 16, 2011

Churn vs Complexity

Complexity
o
s’

= R

® app/models

Churn

Highcharts.com

Wednesday, November 16, 2011

Churn vs Complexity

<

>

< &
E

o

v * <

: 4
<&
‘ <

oS 4
$ o0 1b -
L 2 2 2B 2 L 2 L 2 =

& app/controllers

Churn

Highcharts.com

Wednesday, November 16, 2011

A Method Lifeline

time

30.0

22.5

15.0

7.5

Wednesday, November 16, 2011

Frequency of Inter-commit Intervals

5000
3750
2500

1250

”'('c
ooy
L T,

0 3 6 9 1215182124 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96

Wednesday, November 16, 2011

Frequency of Inter-commit Intervals

60
B
45
30
o
™ O
a
.® O
e o) o) '
@
* ®
« ®
OO oMo
P
9 B
a ot (e P
5) 0 “
@ = O ™
« ® o
Y o ROQOR 1M (0 D~ ™

A v ® « _olc DO™ OO

02 46 810121416182022242628303234363840424446485153555760626567697174767882858794

Wednesday, November 16, 2011

Frequency of Inter-commit Intervals

s .~ Rhythm
0 - v O YV O NV oo oanx

02 46 810121416182022242628303234363840424446485153555760626567697174767882858794

Wednesday, November 16, 2011

Frequency of Inter-commit Intervals

10

0

0 2 4 6 8 11 13 16 18 23 25 28 31 35 37 39 42 48 58 64 76 87 93

Wednesday, November 16, 2011

Average Lines of Code Per Commit By Week

150

Wednesday, November 16, 2011

Complexity Tolerance (Developer A)

"
40:-;;'*"*-
¥ +
' o v
2o$;++++ L +
Feot 1 g
Bl b
| fERRRE "4}

Wednesday, November 16, 2011

Complexity Tolerance (Developer B)

150

e
+
112.5
e
75
N +
+ +
+
g L +
% +
37.5 ;i + #
+ +
¥ *1:*'*‘
$ B T .
TES. +
. ¥T+$¢¢ +
0 5 10 15 20

Wednesday, November 16, 2011

Ownership Effect (all methods)

800 —+

+

+
600

+
B

o +

=

+

28 42 56 70

Wednesday, November 16, 2011

Methods Ascending (5)

U & - v 0 i
N ¢ - ol - - - - e
o .
Y -
1L O o’ - i ¢ - I

Wednesday, November 16, 2011

Trending Methods

trending_methods events
method_events(events).select {lel e.status == :changed } \
.group_by {lel month_from_date(e.date) } \
E0Na\
.last[1] \

. freq_by(&:method_name)
.sort_by {|_,count| -count } \
.take(19)

Wednesday, November 16, 2011

Classes By Closure Date

classes_by_closure events
class_names = method_events(events).map(&:class_name).uniq
classes = Hash[class_names.zip([Time.now] * class_names.length)]

method_events(events).each {lel classes[e.class_name] = e.date }
classes.to_a.sort_by {|_,datel date }

Wednesday, November 16, 2011

Temporal Correlation of Class Changes

temporal_correlation_of_classes events
events.group_by {lel [e.day,e.committer]} \
.values \
.map {lel e.map(&:class_name).uniq.combination(2).to_a } \
.flatten(1l) \

.pairs \
.freq_by {lel e } \
.sort_by {lpl| p[1] }

Wednesday, November 16, 2011

Behavioral Economics

Wednesday, November 16, 2011

If you want parole, have your case heard right after lunch

By Kate Shaw | Last updated 4 days ago

Between the courtroom antics of lawyers, witnesses,
and jurors, reason doesn't always prevail in our legal
system. But judges are trained to be impartial,
consistent, and rational, and make deliberate decisions
based on the case in front of them, right? Actually no,
according to a new study in PNAS, which shows that
judges are subject to the same whims and lapses in
judgment as the rest of us.

The authors examined over 1,000 parole decisions
made by eight judges in Israel over a 10-month period.
In each parole request, a prisoner appeared in front of
a judge, and the judge could either accept or deny the request. The judges heard between 14 and 35 of these
cases per day, separated into three distinct sessions. The first session ran from the beginning of the day until
a mid-morning snack break, the second lasted from the snack break until a late lunch, and the third lasted
from lunch until the end of the day.

Overall, judges were much more likely to accept prisoners’ requests for parole at the beginning of the day than
the at end. Moreover, a prisoner's chances of receiving parole more than doubled if his case was heard at the
beginning of one of the three sessions, rather than later on in the session. More specifically, it was the number
of rulings that a judge made, rather than the time elapsed in a session, that significantly affected later
decisions. Every single judge in the sample followed this pattern.

Wednesday, November 16, 2011

Judgment day
Favourable rulings by parole boards, %

MEAL BREAK

1 5 10 15 20 25 30
Number of cases heard that day

Source: PNAS

80

60

40

20

Wednesday, November 16, 2011

s it easier to add code to an existing
method or to add a new method?

Wednesday, November 16, 2011

Is it easier to add a method to an
existing class or to add it a new class!?

Wednesday, November 16, 2011

We should not be surprised by what
we see.

Wednesday, November 16, 2011

Commits By Hour

7000
5250
3500

1750

0
01 23 4 8 6 8 510 1112 191416 1617 18:19 20 2122 23

chart(['hour','commits'],method _events(events).freq_by {|e| e.date.hour })

Wednesday, November 16, 2011

Commits By Minute

2000

1500

1000 — —

500

chart(['hour','commits'],method events(events).freq by {|e| e.date.min })

Wednesday, November 16, 2011

Method and Spec Changes Per Hour of Day

20000 -

15000 -

10000 -

5000 -

0 1 2 3 45 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23

O methods O specs

Wednesday, November 16, 2011

Another Method

time

Wednesday, November 16, 2011

Method Complexity Trends in a Class

17.5

Wednesday, November 16, 2011

Code Blindness

Wednesday, November 16, 2011

Walking Out of Code Blindness

Wednesday, November 16, 2011

Walking Out of Code Blindness

= | Toullgnorance

Wednesday, November 16, 2011

Walking Out of Code Blindness

Wednesday, November 16, 2011

Organization Success Metrics

Dimersion | (A w | %o e thee dmercions To el into tee metrics
Dimersion2 |(&) [

. Metric | (Avg)
= B Asnc 1 |Avg)
= Mesc 1| gos)
20
-
0

Az
Apen

03
Jebn)
b7

NN
= Metric 2 (Avg)

B wasio 2 (Av)
N0

s enc 2 (godl)
“
: _-lll

Wednesday, November 16, 2011

There is nothing more abstract
than 4 (except maybe 5).

Walking Out of Code Blindness

Wednesday, November 16, 2011

Wednesday, November 16, 2011

Wednesday, November 16, 2011

N VN —
S— — \-‘\'9'.{2.94—7 R
=#A | B3 \ X ’a
= &/ / i\g\;l\ -
—_— .\- >

Wednesday, November 16, 2011

Walking Out of Code Blindness

Qualitatively Assessing

— = Lifecycle Managing

Wednesday, November 16, 2011

Develop a

proposed
Sl solution
Identify Perform the project
a need i
Project objective
Agreement
' Terminate
Request for the project

proposal

Wednesday, November 16, 2011

Walking Out of Code Blindness

Wednesday, November 16, 2011

Conway’s Law

Figuroe t
2 Tha aystem, shown at rhe Yoo,

comunlcates with the cutpidu
world through the theos intoxw
1 faces 1, 2, and 3, The middle

\ figura =zhows the ooy Nubyys.
ramx. two of which ara aiown in

Any organization that designs a system \ 3maiswe The totven.
will inevitably produce a design whose
structure is a copy of the organization's
communication structure.

Node

Aranchas

Bubsyakam a gubsystem b

Wednesday, November 16, 2011

Wednesday, November 16, 2011

— added - changed ~ deleted

Wednesday, November 16, 2011

Added Complexity Over Time

2000 3000
|

1000

0
1

repo.commits.map {|c,_| repo.commit(c).added _complexity.to i }

Wednesday, November 16, 2011

0

Wednesday, November 16, 2011

Peter Provost - The Bufferfly Effect

Wednesday, November 16, 2011

WabisSabvi

for Artists,
Designers,
Poets &

Philosophers

Wednesday, November 16, 2011

Wednesday, November 16, 2011

