
Keeping Movies Running
Amid Thunderstorms
Fault-tolerant Systems @ Netflix

Sid Anand (@r39132)

QCon SF 2011

1

Thursday, November 17, 2011

Backgrounder
Netflix Then and Now

2

Thursday, November 17, 2011

Netflix Then and Now

Netflix prior to circa 2009

Users watched DVDs at home

Peak days : Friday, Saturday, Sunday

Users returned DVDs & Updated their Qs

Peak days : Sunday, Monday

We shipped the next DVDs

Peak days : Monday, Tuesday

Scheduled Site Downtimes on alternate
Wednesdays

Netflix post circa 2009

Users watch streaming at home

Peak days : Friday, Saturday, Sunday

Off-Peak days see many orders of
magnitude more traffic than prior to
2009

User expectation is that streaming is
always available

No Scheduled Site Downtimes

Fault Tolerance is a top design concern

3

Thursday, November 17, 2011

Netflix DC Architecture
A Simple System

4

Thursday, November 17, 2011

Netflix’s DC Architecture

Components

1 Netscaler H/W Load Balancer

~20 “WWW” Apache+Tomcat servers

3 Oracle DBs & 1 MySQL DB

Cache Servers

Cinematch Recommendation System

Apache + Tomcat

H/W Load Balancer

Oracle

Apache + TomcatApache + Tomcat

MySQL Cache ServersCinematch System

5

Thursday, November 17, 2011

Netflix’s DC Architecture
Types of Production Issues

Java Garbage Collection problems,
which would would result in slower
WWW pages

Deadlocks in our multi-threaded Java
application would cause web page
loading to timeout

Transaction locking in the DB would
result in the similar web page loading
timeouts

Under-optimized SQL or DB would
cause slower web pages (e.g. DB
optimizer picks a sub-optimal the
execution plan)

Apache + Tomcat

H/W Load Balancer

Oracle

Apache + TomcatApache + Tomcat

MySQL Cache ServersCinematch System

6

Thursday, November 17, 2011

Netflix’s DC Architecture

Architecture Pros

As serious as these sound, they were
typically single-system failure scenarios

Single-system failures are relatively
easy to resolve

Architecture Cons

Not horizontally scalable

Weʼre constrained by what can fit on
a single box

Not conducive to high-velocity
development and deployment

Apache + Tomcat

H/W Load Balancer

Oracle

Apache + TomcatApache + Tomcat

MySQL Cache ServersCinematch System

7

Thursday, November 17, 2011

Netflix’s Cloud Architecture
A Less Simple System

8

Thursday, November 17, 2011

Netflix’s Cloud Architecture

Components

Many (~100) applications, organized in
clusters

Clusters can be at different levels in the
call stack

Clusters can call each other

ELB ELB

NES NES NES NES

Discovery

NMTS NMTS

NMTS NMTS

NMTS NMTS

NBES NBES

IAAS IAAS IAAS

9

Thursday, November 17, 2011

Netflix’s Cloud Architecture
Levels

NES : Netflix Edge Services

NMTS : Netflix Mid-tier Services

NBES : Netflix Back-end Services

IAAS : AWS IAAS Services

Discovery : Help services discover NMTS
and NBES services

ELB ELB

NES NES NES NES

Discovery

NMTS NMTS

NMTS NMTS

NMTS NMTS

NBES NBES

IAAS IAAS IAAS

10

Thursday, November 17, 2011

Netflix’s Cloud Architecture
Components (NES)

Overview

Any service that browsers and streaming
devices connect to over the internet

They sit behind AWS Elastic Load
Balancers (a.k.a. ELB)

They call clusters at lower levels

ELB ELB

NES NES NES NES

Discovery

NMTS NMTS

NMTS NMTS

NMTS NMTS

NBES NBES

IAAS IAAS IAAS

11

Thursday, November 17, 2011

Netflix’s Cloud Architecture
Components (NES)

Examples

API Servers

Support the video browsing experience

Also allows users to modify their Q

Streaming Control Servers

Support streaming video playback

Authenticate your Wii, PS3, etc...

Download DRM to the Wii, PS3, etc...

Return a list of CDN urls to the Wii, PS3,
etc...

ELB ELB

NES NES NES NES

Discovery

NMTS NMTS

NMTS NMTS

NMTS NMTS

NBES NBES

IAAS IAAS IAAS

12

Thursday, November 17, 2011

Netflix’s Cloud Architecture

Components (NMTS)

Overview

Can call services at the same or lower
levels

Other NMTS

NBES, IAAS

Not NES

Exposed through our Discovery service

ELB ELB

NES NES NES NES

Discovery

NMTS NMTS

NMTS NMTS

NMTS NMTS

NBES NBES

IAAS IAAS IAAS

13

Thursday, November 17, 2011

Netflix’s Cloud Architecture
Components (NMTS)

Examples

Netflix Queue Servers

Modify items in the usersʼ movie queue

Viewing History Servers

Record and track all streaming movie
watching

SIMS Servers

Compute and serve user-to-user and
movie-to-movie similarities

ELB ELB

NES NES NES NES

Discovery

NMTS NMTS

NMTS NMTS

NMTS NMTS

NBES NBES

IAAS IAAS IAAS

14

Thursday, November 17, 2011

Netflix’s Cloud Architecture
Components (NBES)

Overview

A back-end, usually 3rd party, open-source
service

Leaf in the call tree. Cannot call anything
else

ELB ELB

NES NES NES NES

Discovery

NMTS NMTS

NMTS NMTS

NMTS NMTS

NBES NBES

IAAS IAAS IAAS

15

Thursday, November 17, 2011

Netflix’s Cloud Architecture

Components (NBES)

Examples

Cassandra Clusters

Our new cloud database is Cassandra and
stores all sorts of data to support
application needs

Zookeeper Clusters

Our distributed lock service and sequence
generator

Memcached Clusters

Typically caches things that we store in S3
but need to access quickly or often

ELB ELB

NES NES NES NES

Discovery

NMTS NMTS

NMTS NMTS

NMTS NMTS

NBES NBES

IAAS IAAS IAAS

16

Thursday, November 17, 2011

Netflix’s Cloud Architecture
Components (IAAS)

Examples

AWS S3

Large-sized data (e.g. video encodes,
application logs, etc...) is stored here, not
Cassandra

AWS SQS

Amazonʼs message queue to send events
(e.g. Facebook network updates are
processed asynchronously over SQS)

ELB ELB

NES NES NES NES

Discovery

NMTS NMTS

NMTS NMTS

NMTS NMTS

NBES NBES

IAAS IAAS IAAS

17

Thursday, November 17, 2011

Netflix’s Cloud Architecture
Types of Production Issues

A user-issued call will pass through
multiple levels during normal operation

We are now exposed to multi-system
coincident failures, a.k.a. coordinated
failures

ELB ELB

NES NES NES NES

Discovery

NMTS NMTS

NMTS NMTS

NMTS NMTS

NBES NBES

IAAS IAAS IAAS

18

Thursday, November 17, 2011

Netflix’s Cloud Architecture
Architecture Pros

Horizontally scalable at every level

Should give us maximum availability

Supports high-velocity development and
deployment

Architecture Cons

A user-issued call will pass through multiple
levels (a.k.a. hops) during normal operation

Latency can be a concern

We are now exposed to multi-system
coincident failures, a.k.a. coordinated
failures

A lot of moving parts

ELB ELB

NES NES NES NES

Discovery

NMTS NMTS

NMTS NMTS

NMTS NMTS

NBES NBES

IAAS IAAS IAAS

19

Thursday, November 17, 2011

Issue 1
Capacity Planning

20

Thursday, November 17, 2011

Issue 1

• Service X and Service Y, each made up of 2 instances,
call Service A, also made up of 2 instance

• If either of these services expect a large increase in
traffic, they need to let the owner of Service A know

• Service A can then scale up ahead of the traffic
increase

Disaster Avoided ??

X X Y Y

A A

X X Y Y

A AA A A A

21

Thursday, November 17, 2011

Issue 1
• A given application owner may need to contact 20 other

application owners each time he expects to get a large
increase in traffic

• Too much human coordination

• A few options

• Some service owners vastly over-provision for
their application

• Not cost effective

• Auto-scaling

• We want to generalize the model first
proved by our Streaming Control Server
(a.k.a. NCCP) team

X X Y Y

A A

X X Y Y

A AA A A A

22

Thursday, November 17, 2011

ELB AutoScaling Interlude

How to use an ELB

An elastic-load balancer (ELB) routes
traffic to your EC2 instances

e.g. of an ELB : nccp-wii-11111111.us-
east-1.elb.amazonaws.com

Netflix maps a CNAME to this ELB

e.g. : nccp.wii.netflix.com

Netflix then registers the API Service’s
EC2 instances with this ELB

The ELB periodically polls attached EC2
instances to ensure the instances are
healthy

23

Thursday, November 17, 2011

ELB AutoScaling Interlude

Taking this a bit further

The NCCP servers can publish metrics to
AWS CloudWatch

We can set up an alarm in Cloud Watch
on a metric (e.g. CPU)

We can associate an auto scale policy with
that alarm (e.g. if CPU > 60%, add 3
more instances)

When a metric goes above a limit, an
alarm is triggered, causing auto-scaling,
which grows our pool

24

Thursday, November 17, 2011

ELB AutoScaling Interlude

NCCP
Cloud
Watch

(Alarms)

Auto
Scaling
Service

(Policies)

EC2 Instances
Added/Removed

EC2 instances publish
CPU data to CW

CloudWatch alarms
trigger ASG policies

25

Thursday, November 17, 2011

ELB AutoScaling Interlude

Scale Out Event Average CPU > 60% for 5 minutes

Scale In Event Average CPU < 30% FOR 5 minutes

Cool Down Period 10 minutes

Auto-Scale Alerts DLAutoScaleEvents

26

Thursday, November 17, 2011

@r39132 23
27

Thursday, November 17, 2011

Issue 1

Summary

We would like to have auto-scaling at all levels.

X X Y Y

A A

X X Y Y

A AA A A A

28

Thursday, November 17, 2011

Issue 2
Thundering herds to NMTS

29

Thursday, November 17, 2011

Issue 2

Step 1

Service X and Service Y, each made up of 2
instances, call Service A, also made up of 2
instance

Step 2a

Service Y overwhelms Service A

Step 3

Services X & Y experience read and
connection timeouts against an overwhelmed
Service A

Step 4

Service Aʼs tier get 2 more machines

X X Y Y

A A

X X Y Y

A A

X X Y Y

A A

Tim
e o

ut
s

Tim
e o

uts

Step 1

Step 2a

Step 3

X X Y Y

A A
Tim

e o
ut

s

Tim
e o

uts

AA JUST ADDEDJUST ADDED
Step 4

30

Thursday, November 17, 2011

Issue 2

Step 5

• New requests + Retries cause
request storms (a.k.a. thundering
herds)

• If Service A can be grown to exceed
retry storm steady-state traffic
volume, we can exit this vicious
cycle

Step 6

• Else, more timeouts, and VC
continues

X X Y Y

A A

Tim
e o

ut
s

Tim
e o

uts
AA

X X Y Y

A A AA

VICIOUS CYCLE

Step 5

Step 6

31

Thursday, November 17, 2011

Issue 2

Step 1

Service X and Service Y, each made up of 2
instances, call Service A, also made up of 2
instance

Step 2b

Service A experiences slowness

Step 3

Services X & Y experience read and
connection timeouts against a slower Service A

Step 4

If the slowness can be fixed by adding more
machines to Service Aʼs tier, then do so

X X Y Y

A A

X X Y Y

A A

X X Y Y

A A

Tim
e o

ut
s

Tim
e o

uts

Step 1

Step 2b

Step 3

X X Y Y

A A
Tim

e o
ut

s

Tim
e o

uts

AA JUST ADDEDJUST ADDED
Step 4

SLOW

OPTIONAL

32

Thursday, November 17, 2011

Issue 2

Step 5

• New requests + Retries cause
request storms (a.k.a. thundering
herds)

• If Service A can be grown to exceed
retry storm steady-state traffic
volume, we can exit this vicious
cycle

Step 6

• Else, more timeouts, and VC
continues

X X Y Y

A A

Tim
e o

ut
s

Tim
e o

uts
AA

X X Y Y

A A AA

VICIOUS CYCLE

Step 5

Step 6

33

Thursday, November 17, 2011

Issue 2
Potential Causes of Thundering Herd

• Service Y sends more traffic to Service A, without checking if Service A has
available capacity

• Service A slows down

• Service Yʻs time outs against Service A are set too low

• Service Yʻs retries against Service A are too aggressive

• Natural organic growth in traffic hit a tipping point in the system -- in Service A
in this case

S1

S2

S2Ti
m

e
O

ut
s

(U
ps

tre
am

)

Thundering Herd (Dow
nstream

)

34

Thursday, November 17, 2011

Solutions to Issue 2
Thundering herds to NMTS

35

Thursday, November 17, 2011

Solutions to Issue 2
The Platform Solution

• Every service at Netflix sits on the platform.jar

• The platform.jar offers 2 components of interest here:

• NIWS library : the client-side of Netflix Inter-Web
Service calls. Handles retry, failover, thundering-herd
prevention, & fast failure

• BaseServer library : a set of Tomcat servlet filters
that protect the underlying application servlet stack.
In this context, it throttles traffic

X

NIWS

NIWS Throttle Layer

A

BaseServer Filter Chain

BaseServer Throttle Layer

36

Thursday, November 17, 2011

Solutions to Issue 2
The Platform Solution

• NIWS library

• Fair Retry Logic : e.g. exponential bounded backoff

• Takes 2 configuration params per client:

• Max_Num_of_Requests (a.k.a. MNR)

• Sample_Interval_in_seconds (a.k.a. SI)

• Ensures that a client does not send more than MNR/
SI requests/s, else throttles requests at the client

X

NIWS

NIWS Throttle Layer

A

BaseServer Filter Chain

BaseServer Throttle Layer

37

Thursday, November 17, 2011

Solutions to Issue 2
The Platform Solution

• BaseServer

• As an additional fail-safe, the server can set throttles
that are not client specific (i.e. the limits apply to
total inbound traffic, regardless of client)

• Takes 1 configuration parameter:

• Max_Num_of_Concurrent_Requests (a.k.a.
MNCR)

• Ensures that a server does not handle more than
MNCR requests at any instant

• If the traffic exceeds the limits, reject excess calls at
the server (i.e. 503s)

X

NIWS

NIWS Throttle Layer

A

BaseServer Filter Chain

BaseServer Throttle Layer

38

Thursday, November 17, 2011

Solutions to Issue 2
The Platform Solution

• Graceful Degradation

• Any client that is throttled at either the NIWS
Throttle Layer or the BaseServer Throttle Layer
need to implement graceful degradation

• Netflixʼs Web Scale Traffic falls in 2 categories:

• Users get a personalized set of movies to
pick from (i.e. via API Edge Server path)

• GD : Show popular movies, not
personalized movies

• Users can start watching a movie (i.e. via
NCCP Edge Server path)

• GD : tougher problem to solve

• When device leases expire, we
honor them if we are unable to
generate a new one for them

X

NIWS

NIWS Throttle Layer

A

BaseServer Filter Chain

BaseServer Throttle Layer

39

Thursday, November 17, 2011

Solutions to Issue 2
This all sounds great!

• But, what if developers do not use these
built-in features of the platform or neglect to
set their configuration appropriately?

• (i.e. the default RPS limit in the NIWS
client is Integer.MAX_VALUE)

40

Thursday, November 17, 2011

Solutions to Issue 2

We have a little help

41

Thursday, November 17, 2011

Simian Army
Prevention is the best medicine

42

Thursday, November 17, 2011

Simian Army
• Chaos Monkey

• Simulates hard failures in AWS by killing a few instances per ASG (e.g. Auto Scale Group)

• Similar to how EC2 instances can be killed by AWS with little warning

• Tests clientsʼ ability to gracefully deal with broken connections, interrupted calls, etc...

• Verifies that all services are running within the protection of AWS Auto Scale Groups, which
reincarnates killed instances

• If not, the Chaos monkey will win!

43

Thursday, November 17, 2011

Simian Army

• Latency Monkey

• Simulates soft failures -- i.e. a service gets slower

• Injects random delays in NIWS (client-side) or BaseServer (server-side) of a client-server
interaction in production

• Tests the ability of applications to detect and recover (i.e. Graceful Degradation) from the harder
problem of delays, that leads to thundering herd and timeouts

44

Thursday, November 17, 2011

Simian Army

Does this solve all of our issues?

45

Thursday, November 17, 2011

Simian Army

The infinite cloud is infinite when your needs are
moderate!

To ensure fairness among tenants, AWS meters or limits every resource

Hence, we hit limits quite often. Our “velocity” is limited by how long it takes for AWS to
turn around and raise the limit -- a few hours!

46

Thursday, November 17, 2011

Simian Army

• Limits Monkey

• Checks once a day whether we are approaching one of our limits and triggers alerts for us to
proactively reach out to AWS!

• Conformity & Janitor Monkeys

• Finds and clean up orphaned resources (e.g. EC2 instances that are not in an ASG,
unreferenced security groups, ELBs, ASGs, etc...) to increase head-room

• Buys us more time before we run out of resources and also saves us $$$$

47

Thursday, November 17, 2011

Simian Army

The Simian Army fills the gap created by an absence
of process and a need to ensure fault-tolerance and

efficient operation of our systems

48

Thursday, November 17, 2011

Fast Rollback
Fault-tolerant deployment

49

Thursday, November 17, 2011

Fast Rollback

What is the point of having Fault-Tolerant layers if
deployments of a bug can take them down?

50

Thursday, November 17, 2011

Fast Rollback

51

Thursday, November 17, 2011

Fast Rollback

Optimism causes outages

51

Thursday, November 17, 2011

Fast Rollback

Optimism causes outages

Production traffic is unique

51

Thursday, November 17, 2011

Fast Rollback

Optimism causes outages

Production traffic is unique

Keep old version running

51

Thursday, November 17, 2011

Fast Rollback

Optimism causes outages

Production traffic is unique

Keep old version running

Switch traffic to new version

51

Thursday, November 17, 2011

Fast Rollback

Optimism causes outages

Production traffic is unique

Keep old version running

Switch traffic to new version

Monitor results

51

Thursday, November 17, 2011

Fast Rollback

Optimism causes outages

Production traffic is unique

Keep old version running

Switch traffic to new version

Monitor results

Revert traffic quickly

51

Thursday, November 17, 2011

Fast Rollback

52

Thursday, November 17, 2011

Fast Rollback

api-usprod-v007

api-frontend

52

Thursday, November 17, 2011

Fast Rollback

api-usprod-v007

api-frontend

api-usprod-v008

52

Thursday, November 17, 2011

Fast Rollback

api-usprod-v007

api-frontend

api-usprod-v008

52

Thursday, November 17, 2011

Fast Rollback

api-usprod-v007

api-frontend

api-usprod-v008

52

Thursday, November 17, 2011

Fast Rollback

api-usprod-v007

api-frontend

api-usprod-v008

52

Thursday, November 17, 2011

Fast Rollback

api-frontend

api-usprod-v008

52

Thursday, November 17, 2011

Fast Rollback

53

Thursday, November 17, 2011

Fast Rollback

api-usprod-v007

api-frontend

53

Thursday, November 17, 2011

Fast Rollback

api-usprod-v007

api-frontend

api-usprod-v008

53

Thursday, November 17, 2011

Fast Rollback

api-usprod-v007

api-frontend

api-usprod-v008

53

Thursday, November 17, 2011

Fast Rollback

api-usprod-v007

api-frontend

api-usprod-v008

53

Thursday, November 17, 2011

Fast Rollback

api-usprod-v007

api-frontend

53

Thursday, November 17, 2011

Acknowledgements
Platform Engineering

• Sudhir Tonse

• Pradeep Kamath

Engineering Tools

• Joe Sondow

Streaming Server

• Ranjit Mavinkurve

54

Thursday, November 17, 2011

Questions?

Sid Anand

 @r39132

55

Thursday, November 17, 2011

