
Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 131

Project Lambda in Java SE 8
Daniel Smith
Java Language Designer

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 132

The following is intended to outline our general product direction. It is intended
for information purposes only, and may not be incorporated into any contract.
It is not a commitment to deliver any material, code, or functionality, and should
not be relied upon in making purchasing decisions. The development, release,
and timing of any features or functionality described for Oracle’s products
remains at the sole discretion of Oracle.

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

The Java Programming Language

• Around 9,000,000 developers worldwide

• 17 years old

• 4 major revisions (1996, 1997, 2004, 2013...)

• [Insert staggering number] of companies very heavily invested

• Formally standardized and evolved via community

3

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Evolving a Major Language

• Adapting to change

• Righting what’s wrong

• Maintaining compatibility

• Preserving the core

4

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 135

Project Lambda:
Function Values in Java

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Object subclass: Widget [
 draw: canvas [...]
 click [...]
]

gui add:(Widget new).

(define f
 (lambda (x) (* x x)))

(map nums f)

Code as Data

6

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

interface Runnable {
 void run();
}

Thread hello = new Thread(new Runnable() {
 public void run() {
 System.out.println(“Hello, world!”);
 }
});

Status Quo in Java 1.1

7

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

interface Predicate<T> {
 boolean accept(T arg);
}

lines.removeAll(new Predicate<String>() {
 public boolean accept(String line) {
 return line.startsWith(“#”);
 }
});

Status Quo in Java 5

8

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

interface Predicate<T> {
 boolean accept(T arg);
}

lines.removeAll(line -> line.startsWith(“#”));

What We Wish It Looked Like

9

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Why Functions in Java? Adapting to Change

10

• Widely-adopted programming style
• 1995: functions-as-values is too hard to understand
• Now: almost everybody has them (even C++)

• Physical constraints cause changing models
• 1995: sequential execution, mutation
• Today: concurrency, immutability

• A gentle push in the right direction

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Why Functions in Java? Better Libraries

11

•Lots of applications...

• Our priorities:
• Collections
• Concurrency

public class ForkBlur extends RecursiveAction {
 private int[] mSource;
 private int mStart;
 private int mLength;
 private int[] mDestination;

 public ForkBlur(int[] src, int start, int length, int[] dst) {
 mSource = src;
 mStart = start;
 mLength = length;
 mDestination = dst;
 }

 // Average pixels from source, write results into destination.
 protected void computeDirectly() {
 for (int index = mStart; index < mStart + mLength; index++) {
 mDestination[index] = blur(index, mSource);
 }
 }

 protected static int sThreshold = 10000;

 protected void compute() {
 if (mLength < sThreshold) {
 computeDirectly();
 return;
 }

 int split = mLength / 2;

 invokeAll(new ForkBlur(mSource, mStart, split, mDestination),
 new ForkBlur(mSource, mStart + split, mLength - split, mDestination));
 }

}

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Brief History

• 1997: Odersky/Wadler experimental “Pizza” work

• 1997: Java 1.1 with anonymous classes

• 2006-2008: Vigorous community debate

• 2009: OpenJDK Project Lambda formed

• 2010: JSR 335 filed

12

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1313

Java 8 Language Concepts & Features

 Lambda expressions
 Functional interfaces
 Target typing
 Method references
 Default methods

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Lambda Expressions

14

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

widget -> {
 if (flag) widget.poke();
 else widget.prod();
}

(int x, int y) -> {
 assert x < y;
 return x*y;
}

x -> x+1

(s,i) -> s.substring(0,i)

(Integer i) -> list.add(i)

() -> System.out.print(“x”)

cond -> cond ? 23 : 57

Lambda Expressions

15

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

void cut(List<String> l,
 int len) {

 l.updateAll(s ->
 s.substring(0, len));

}

Variable Capture

16

• Lambdas can refer to variables
declared outside the body

• These variables can be final or
“effectively final”

• Works for anonymous classes,
too

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Meaning of Names in Lambdas

17

• Anonymous classes introduce a new “level” of scope
• ‘this’ means the inner class instance
• ‘ClassName.this’ is used to get to the enclosing class instance
• Inherited names can shadow outer-scope names

• Lambdas reside in the same “level” as the enclosing context
• this refers to the enclosing class
• No new names are inherited
• Like local variables, parameter names can’t shadow other locals

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Functional Interfaces

18

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

String -> int

(String, int, boolean) -> List<? extends Integer>

(String, Number) -> Class<?> throws IOException

Function Types in Java?

19

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Function Types in Java: Functional Interfaces

20

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Common Existing Functional Interfaces

• java.lang.Runnable

• java.util.concurrent.Callable<V>

• java.security.PrivilegedAction<T>

• java.util.Comparator<T>

• java.io.FileFilter

• java.nio.file.PathMatcher

• java.lang.reflect.InvocationHandler

• java.beans.PropertyChangeListener

• java.awt.event.ActionListener

• javax.swing.event.ChangeListener

21

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Attributes of Functional Interfaces

• Parameter types

• Return type

• Method type arguments

• Thrown exceptions

• An expressive, reifiable type name (possibly generic)

• An informal contract

22

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Shiny New Functional Interfaces*

• java.util.functions.Predicate<T>

• java.util.functions.Factory<T>

• java.util.functions.Block<T>

• java.util.functions.Mapper<T, R>

• java.util.functions.BinaryOperator<T>

23

* Names and concepts in libraries are still tentative

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

/** Creates an empty set. */
public interface SetFactory {
 <T> Set<T> create();
}

/** Performs a blocking, interruptible action. */
public interface BlockingTask<T> {
 <T> T run() throws InterruptedException;
}

Declare Your Own

24

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Target Typing

25

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

// Runnable: void run()
Runnable r =
 () -> System.out.println(“hi”);

// Predicate<String>: boolean test(String arg)
Predicate<String> pred =
 s -> s.length() < 100;

Assigning a Lambda to a Variable

26

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Object o =
 () -> System.out.println(“hi”);

// Predicate<String>: boolean test(String arg)
Predicate<String> pred =
 () -> System.out.println(“hi”);

Target Typing Errors

27

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

long[][] arr =
 { { 1, 2, 3 }, { 4, 5, 6 } };

List<? extends Number> nums =
 Collections.emptyList();

Set<Map<String, Object>> maps =
 new HashSet<>();

Target Typing in Java 7

28

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

class Thread {
 public Thread(Runnable r) { ... }
}

// Runnable: void run()
new Thread(() -> System.out.println(“hi”));

Target Typing for Invocations

29

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

interface Stream<T> {
 Stream<T> filter(Predicate<T> pred);
}

Stream<String> strings = ...;

// Predicate<T>: boolean test(T arg)
strings.filter(s -> s.length() < 100);

Target Typing for Invocations

30

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

<T> int m(Predicate<T> p);
int m(FileFilter f);
<S,T> int m(Mapper<S,T> m);

m(x -> x == null);

A Recipe for Disaster
(Or: A Recipe for Awesome)

31

• Target typing

• Overload resolution

• Type argument inference

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Object o =
 (Runnable) () -> System.out.println(“hi”);

Runnable r =
 condition() ? null : () -> System.gc();

Mapper<String, Runnable> m =
 s -> () -> System.out.println(s);

Other Target Typing Contexts

32

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Method References

33

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

(x, y, z) -> Arrays.asList(x, y, z)

(str, i) -> str.substring(i)

() -> Thread.currentThread().dumpStack()

(s) -> new File(s)

Boilerplate Lambdas

34

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

(x, y, z) -> Arrays.asList(x, y, z)
Arrays::asList
(str, i) -> str.substring(i)
String::substring
() -> Thread.currentThread().dumpStack()
Thread.currentThread()::dumpStack
(s) -> new File(s)
File::new

Method (and Constructor) References

35

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Resolving a Method Reference

36

• Target type provides argument types

• Named method is searched for using those argument types
• Searching for an instance method, the first parameter is the receiver

• Return type must be compatible with target return

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Mapper<Byte, Set<Byte>> m1 = Collections::singleton;

// SetFactory: <T> Set<T> create()
SetFactory f2 = Collections::emptySet;

Mapper<Queue<Float>, Float> m2 = Queue::peek;

Factory<Set<String>> f3 = HashSet::new;

Method References & Generics

37

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Default Methods

38

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

New abstract methods: Bad

interface Widget {
 double weight();
 double volume();

 double density();
}

New concrete methods: Good

abstract class Widget {
 abstract double weight();
 abstract double volume();

 double density() {
 return weight()/volume();
 }
}

Evolving APIs

39

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

class Widgets {

 static double density(Widget w) {
 return w.weight()/w.volume();
 }

}

Workaround: Garbage Classes

40

• Not really a class

• Non-idiomatic invocation syntax

• Non-virtual

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

interface Widget {
 double weight();
 double volume();

 default double density() {
 return weight()/volume();
 }
}

Default Methods: Code in Interfaces

41

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Multiple Inheritance?

42

class C:
concrete m()

interface I:
default m()

class D

interface I:
default m()

interface J:
abstract m()

interface K

interface J:
default m() interface K

class C

interface I:
default m()

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

interface Enumeration<E> extends Iterator<E> {
 boolean hasMoreElements();
 E nextElement();

 default boolean hasNext() { return hasMoreElements(); }
 default E next() { return getNext(); }
 default void remove() { throw new UnsupportedOperationException(); }

 default void forEachParallel(Block<T> b) { ... }
}

Evolving the Java Standard API

43

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Summary

44

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Goals for Project Lambda

45

• Make dramatic & necessary enhancements to the programming model

• Smooth some rough edges in the language

• Preserve compatibility

• Maintain the essence of the Java language

Thursday, November 8, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Learning More

•OpenJDK: openjdk.java.net/projects/lambda

•JSR 335: www.jcp.org/en/jsr/detail?id=335

• Me: daniel.smith@oracle.com

• Download it and try it out!

46

Thursday, November 8, 12

http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
mailto:daniel.smith@oracle.com
mailto:daniel.smith@oracle.com

