
©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

How Not to Measure
Latency

An attempt to confer wisdom...

Gil Tene, CTO & co-Founder, Azul Systems

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

This Talk’s Purpose / Goals
This is not a “there is only one right way” talk

This is a talk about the common pitfalls people run
into when measuring latency

It will hopefully get you to critically examine both
WHY and HOW you measure latency

It will discuss some generic tools that could help

The “Azul makes the world’s best JVM for latency-
sensitive applications” stuff will only come towards the
end, I promise...

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

About me: Gil Tene

co-founder, CTO
@Azul Systems

Have been working on
a “think different” GC
approaches since 2002

Created Pauseless & C4
core GC algorithms
(Tene, Wolf)

A Long history building
Virtual & Physical
Machines, Operating
Systems, Enterprise
apps, etc... * working on real-world trash compaction issues, circa 2004

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

About Azul

We make scalable Virtual
Machines

Have built “whatever it takes
to get job done” since 2002

3 generations of custom SMP
Multi-core HW (Vega)

Now Pure software for
commodity x86 (Zing)

“Industry firsts” in Garbage
collection, elastic memory,
Java virtualization, memory
scale

Vega

C4

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

High level agenda
Some latency behavior background

Latency “philosophy” questions

The pitfalls of using “statistics”

The Coordinated Omission Problem

Some useful tools

Demonstrate what tools can tell us about a latency-
friendly JVM...

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

A classic look at response
time behavior

Response time as a function of load

source: IBM CICS server documentation, “understanding response times”

Average?
Max?

Median?
90%?
99.9%

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Response time over time

When we measure behavior over time, we often see:

source: ZOHO QEngine White Paper: performance testing report analysis

 9

Does the response time meet my target requirements?

Response Time Graphs

Response time is one of the most important characteristics of load testing. Response time reports and
graph measures the web user experience as it indicates how long the user waits for the server to
respond for his request. This is the time taken, in seconds, to receive full response from the server. It
is equivalent to the time taken by the client to connect to the server and receive the response
including image, script and stylesheet.

Response Time Graph (Overall)

Response Time versus Elapsed Time report indicates the average response time of the transactions
over the elapsed time of the load test as shown.

Interpreting Results

From this graph it is possible to identify peaks in the response time over a period of time. Helps to
identify issues when server is continuously loaded for long duration of time.

Response Time Graph (per Transaction)

Response Time versus Elapsed Time report indicates the average response time of the transactions
over the elapsed time of the load test as shown.

“Hiccups”

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

0"

1000"

2000"

3000"

4000"

5000"

6000"

7000"

8000"

9000"

0" 20" 40" 60" 80" 100" 120" 140" 160" 180"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

What happened here?

Source: Gil running an idle program and suspending it five times in the middle

“Hiccups”

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Common fallacies

Computers run application code continuously

Response time can be measured as work units/time

Response time exhibits a normal distribution

“Glitches” or “Semi-random omissions” in measurement
don’t have a big effect.

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Hiccups are [typically]
strongly multi-modal

They don’t look anything like a normal distribution

They usually look like periodic freezes

A complete shift from one mode/behavior to another

Mode A: “good”.

Mode B: “Somewhat bad”

Mode C: “terrible”, ...

....

Common ways people deal with hiccups

Common ways people deal with hiccups

Averages and Standard Deviation

Better ways people deal with hiccups

Actually measuring percentiles
SLA

Response Time
Percentile
plot line

Telco App Example

0"

20"

40"

60"

80"

100"

120"

140"

0" 500" 1000" 1500" 2000" 2500"
Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%" 99.9999%"
0"

20"

40"

60"

80"

100"

120"

140"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

Hiccups"by"Percen?le" SLA"

Requirements

Why we measure latency and response
times to begin with...

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Latency tells us how long
something took

But what do we WANT the latency to be?

What do we want the latency to BEHAVE like?

Latency requirements are usually a PASS/FAIL test
of some predefined criteria

Different applications have different needs

Requirements should reflect application needs

Measurements should provide data to evaluate
requirements

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

The Olympics
aka “ring the bell first”

Goal: Get gold medals

Need to be faster than everyone else at SOME races

Ok to be slower in some, as long as fastest at some
(the average speed doesn’t matter)

Ok to not even finish or compete (the worst case and
99%‘ile don’t matter)

Different strategies can apply. E.g. compete in only 3
races to not risk burning out, or compete in 8 races in
hope of winning two

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Pacemakers
aka “hard” real time

Goal: Keep heart beating

Need to never be slower than X

“Your heart will keep beating 99.9% of the time” is
not very reassuring

Having a good average and a nice standard deviation
don’t matter or help

The worst case is all that matters

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

“Low Latency” Trading
aka “soft” real time

Goal: Be fast enough to make some good plays

Goal: Contain risk and exposure while making plays

E.g. want to “typically” react within 200 usec.

But can’t afford to hold open position for 20 msec, or
react to 30msec stale information

So we want a very good “typical” (median, 50%‘ile)

But we also need a reasonable Max, or 99.99%‘ile

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Interactive applications
aka “squishy” real time

Goal: Keep users happy enough to not complain/leave

Need to have “typically snappy” behavior

Ok to have occasional longer times, but not too high,
and not too often

Example: 90% of responses should be below 0.5sec,
99% should be below 2 seconds, 99.9 should be better
than 5 seconds. And a >10 sec. response should never
happen.

Remember: A single user may have 100 interactions
per session...

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Establishing Requirements
an interactive interview (or thought) process

Q: What are your latency requirements?

A: We need an avg. response of 20msec

Q: Ok. Typical/average of 20msec... So what is the worst case requirement?

A: We don’t have one

Q: So it’s ok for some things to take more than 5 hours?

A: No way!

Q: So I’ll write down “5 hours worst case...”

A: No... Make that “nothing worse than 100 msec”

Q: Are you sure? Even if it’s only three times a day?

A: Ok... Make it “nothing worse than 2 seconds...”

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Establishing Requirements
an interactive interview (or thought) process

Ok. So we need a typical of 20msec, and a worst case of 2 seconds. How often is
it ok to have a 1 second response?

A: (Annoyed) I thought you said only a few times a day

Q: Right. For the worst case. But if half the results are better than 20msec, is it
ok for the other half to be just short of 2 seconds? What % of the time are you
willing to take a 1 second, or a half second hiccup? Or some other level?

A: Oh. Let’s see. We have to better than 50msec 90% of the time, or we’ll be
losing money even when we are fast the rest of the time. We need to be better
than 500msec 99.9% of the time, or our customers will complain and go
elsewhere

Now we have a service level expectation:

 50% better than 20msec
 90% better than 50msec
99.9% better than 500msec
 100% better than 2 seconds

Latency does not live in a vacuum

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Remember this?

How much load can this system handle?

Where the
sysadmin
is willing

to go

What the
marketing

benchmarks
will say

Where users
complain

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Sustainable Throughput:
The throughput achieved while
safely maintaining service levels

Unsustainable
Throughout

FAIL

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Instance capacity test: “Fat Portal”
HotSpot CMS: Peaks at ~ 3GB / 45 concurrent users

* LifeRay portal on JBoss @ 99.9% SLA of 5 second response times

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Instance capacity test: “Fat Portal”
C4: still smooth @ 800 concurrent users

The coordinated omission problem

An accidental conspiracy...

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

The coordinated omission problem
Common Example:

build/buy simple load tester to measure throughput

issue requests one by one at a certain rate

measure and log response time for each request

results log used to produce histograms, percentiles, etc.

So what’s wrong with that?
works well only when all responses fit within rate interval

technique includes implicit “automatic backoff” and coordination

But requirements interested in random, uncoordinated requests

How bad can this get, really?

Example of naïve %’ile

Avg. is 1 msec
over 1st 100 sec

System Stalled
for 100 Sec

Elapsed Time

System easily handles
100 requests/sec

Responds to each
in 1msec

How would you characterize this system?

~50%‘ile is 1 msec ~75%‘ile is 50 sec 99.99%‘ile is ~100sec

Avg. is 50 sec.
over next 100 sec

Overall Average response time is ~25 sec.

Example of naïve %’ile

System Stalled
for 100 Sec

Elapsed Time

System easily handles
100 requests/sec

Responds to each
in 1msec

Naïve Characterization

10,000 @ 1msec 1 @ 100 second

99.99%‘ile is 1 msec! Average. is 10.9msec! Std. Dev. is 0.99sec!
(should be ~100sec) (should be ~25 sec)

Proper measurement

System Stalled
for 100 Sec

Elapsed Time

System easily handles
100 requests/sec

Responds to each
in 1msec

10,000 results
Varying linearly
from 100 sec
to 10 msec

10,000 results
@ 1 msec each

~50%‘ile is 1 msec ~75%‘ile is 50 sec 99.99%‘ile is ~100sec

The real world

99%‘ile MUST be at least 0.29%
of total time (1.29% - 1%)
which would be 5.9 seconds

26.182 seconds
represents 1.29%
of the total time

wrong by a
factor of 1,000x

Results were
collected by a
single client

thread

The real world

The max is 762 (!!!)
standard deviations
away from the mean

305.197 seconds
represents 8.4% of

the timing run

A world record SPECjEnterprise2010 result

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Suggestions
Lessons learned

Whatever your measurement technique is, test it.

Run your measurement method against artificial
system that creates the hypothetical pauses
scenarios. See if your reported results agree with how
you would describe that system behavior

Don’t waste time analyzing until you establish sanity

Don’t use or derive from std. deviation.

Always measure Max time. Consider what it means.

Measure %‘iles. Lots of them.

Some Tools

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

HdrHistogram

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

0%# 90%# 99%# 99.9%# 99.99%# 99.999%# 99.9999%#

Max=137.472+

0#

20#

40#

60#

80#

100#

120#

140#

160#

La
te
nc
y+
(m

se
c)
+

+
+

Percen8le+

Latency+by+Percen8le+Distribu8on+

HdrHistogram
If you want to be able to produce graphs like this...

You need a good dynamic range, and good
resolution, at the same time

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

HdrHistogram

A High Dynamic Range Histogram
Covers a configurable dynamic value range

At configurable precision (expressed as number of significant digits)

For Example:
Track values between 1 microsecond and 1 hour

With 3 decimal points of resolution

Built-in compensation for Coordinated Omission

Open Source
On github, released to the public domain, creative commons CC0

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

HdrHistogram
Fixed cost in both space and time

Built with “latency sensitive” applications in mind

Recording values does not allocate or grow any data structures

Recording values use a fixed computation to determine location (no
searches, no variability in recording cost, FAST)

Even iterating through histogram can be done with no allocation

Internals work like a “floating point” data structure
“Exponent” and “Mantissa”

Exponent determines “Mantissa bucket” to use

“Mantissa buckets” provide linear value range for a given exponent.
Each have enough linear entries to support required precision

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

HdrHistogram
Provides tools for iteration

Linear, Logarithmic, Percentile

Supports percentile iterators
Practical due to high dynamic
range

Convenient percentile output
E.g. 10% intervals between 0 and
50%, 5% intervals between 50%
and 75%, 2.5% intervals between
75% and 87.5%, ...

Very useful for feeding percentile
distribution graphs...

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

0%# 90%# 99%# 99.9%# 99.99%# 99.999%# 99.9999%#

Max=137.472+

0#

20#

40#

60#

80#

100#

120#

140#

160#

La
te
nc
y+
(m

se
c)
+

+
+

Percen8le+

Latency+by+Percen8le+Distribu8on+

HdrHistogram

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

jHiccup

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Incontinuities in Java platform execution

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

1800"

0" 200" 400" 600" 800" 1000" 1200" 1400" 1600" 1800"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups"by"Time"Interval"

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=1665.024&

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

1800"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups"by"Percen@le"Distribu@on"

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

jHiccup
A tool for capturing and displaying platform hiccups

Records any observed non-continuity of the underlying platform

Plots results in simple, consistent format

Simple, non-intrusive
As simple as adding the word “jHiccup” to your java launch line

% jHiccup java myflags myApp

(Or use as a java agent)

Adds a background thread that samples time @ 1000/sec

Open Source
Released to the public domain, creative commons CC0

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Telco App Example

0"

20"

40"

60"

80"

100"

120"

140"

0" 500" 1000" 1500" 2000" 2500"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%" 99.9999%"
0"

20"

40"

60"

80"

100"

120"

140"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

Hiccups"by"Percen?le" SLA"

Optional SLA
plotting

Max Time per
interval

Hiccup
duration at
percentile

levels

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Examples

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Idle App on Busy System

0"

10"

20"

30"

40"

50"

60"

0" 100" 200" 300" 400" 500" 600" 700" 800" 900"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=49.728&

0"

10"

20"

30"

40"

50"

60"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

Idle App on Quiet System

0"

5"

10"

15"

20"

25"

0" 100" 200" 300" 400" 500" 600" 700" 800" 900"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=22.336&

0"

5"

10"

15"

20"

25"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Idle App on Quiet System

0"

5"

10"

15"

20"

25"

0" 100" 200" 300" 400" 500" 600" 700" 800" 900"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=22.336&

0"

5"

10"

15"

20"

25"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

Idle App on Dedicated System

0"

0.05"

0.1"

0.15"

0.2"

0.25"

0.3"

0.35"

0.4"

0.45"

0" 100" 200" 300" 400" 500" 600" 700" 800" 900"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=0.411&

0"

0.05"

0.1"

0.15"

0.2"

0.25"

0.3"

0.35"

0.4"

0.45"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

EHCache: 1GB data set under load

0"

500"

1000"

1500"

2000"

2500"

3000"

3500"

4000"

0" 500" 1000" 1500" 2000"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups"by"Time"Interval"

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%" 99.9999%"

Max=3448.832&

0"

500"

1000"

1500"

2000"

2500"

3000"

3500"

4000"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups"by"Percen@le"Distribu@on"

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Fun with jHiccup

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Oracle HotSpot CMS, 1GB in an 8GB heap

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=13156.352&

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

Zing 5, 1GB in an 8GB heap

0"

5"

10"

15"

20"

25"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%" 99.9999%"

Max=20.384&

0"

5"

10"

15"

20"

25"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Oracle HotSpot CMS, 1GB in an 8GB heap

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=13156.352&

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

Zing 5, 1GB in an 8GB heap

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%" 99.9999%"Max=20.384&
0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

Drawn to scale

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

What you can expect (from Zing)
in the low latency world

Assuming individual transaction work is “short” (on
the order of 1 msec), and assuming you don’t have
100s of runnable threads competing for 10 cores...

“Easily” get your application to < 10 msec worst case

With some tuning, 2-3 msec worst case

Can go to below 1 msec worst case...

May require heavy tuning/tweaking

Mileage WILL vary

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1.4"

1.6"

1.8"

0" 100" 200" 300" 400" 500" 600"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=1.568&

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1.4"

1.6"

1.8"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

0"

5"

10"

15"

20"

25"

0" 100" 200" 300" 400" 500" 600"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=22.656&

0"

5"

10"

15"

20"

25"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

Oracle HotSpot (pure newgen) Zing

Low latency trading application

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Low latency - Drawn to scale

Oracle HotSpot (pure newgen) Zing

0"

5"

10"

15"

20"

25"

0" 100" 200" 300" 400" 500" 600"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=1.568&

0"

5"

10"

15"

20"

25"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

0"

5"

10"

15"

20"

25"

0" 100" 200" 300" 400" 500" 600"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=22.656&

0"

5"

10"

15"

20"

25"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Takeaways
Standard Deviation and application latency should
never show up on the same page...

If you haven’t stated percentiles and a Max, you
haven’t specified your requirements

Measuring throughput without latency behavior is
[usually] meaningless

Mistakes in measurement/analysis can lead to orders-
of-magnitude errors and lead to bad business decisions

jHiccup and HdrHistogram are generically useful

The Zing JVM is cool...

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Q & A
http://www.azulsystems.com

http://www.jhiccup.com

http://giltene.github.com/HdrHistogram

http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com

