How Not to Measure
Latency

An attempt to confer wisdom...

Gil Tene, CTO & co-Founder, Azul Systems

SSSSSSSS

This Talk’s Purpose / Goals

@ This is not a “there is only one right way” talk

@ This is a talk about the common pitfalls people run
info when measuring latency

o It will hopefully get you to critically examine both
WHY and HOW you measure latency

@ It will discuss some generic fools that could help

® The "Azul makes the worlds best JVM for latency-
sensitive applications” stuff will only come towards the
end, I promise...

About me: Gil Tene

@ co-founder, CTO
@Azul Systems

@ Have been working on
a “think different” GC
approaches since 2002

® Created Pauseless & C4

core GC algorithms
(Tene, Wolf)

@ A Long history building
Virtual & Physical
Machines, Operating

Systems, Enterprise
apps etc * working on real-world trash compaction issues, circa 2004
¥ (X X

©2012 Azul Systems, Inc.

About Azul

@ We make scalable Virtual
Machines

& Have built "whatever it takes
to get job done” since 2002

@ 3 generations of custom SMP .
Multi-core HW (Vega)

@ Now Pure software for
commodity x86 (Zing)

@ “Industry firsts” in Garbage
collection, elastic memory,
Java virtualization, memory
scale

©2012 Azul Systems, Inc.

High level agenda

@ Some latency behavior background
@ Latency “philosophy” questions

@ The pitfalls of using "statistics”

® The Coordinated Omission Problem
@ Some useful tools

@ Demonstrate what tools can tell us about a latency-
friendly JVM...

A classic look at response
time behavior

Response time as a function of load

C Unacceptable (poor) response time

B Acceptable response time

s, decreasing resource availabilty 4%

* source: IBM CICS server documentation, “unders’randing response times” AZUL

SSSSSSS

Response time over fime

When we measure behavior over time, we often see:

J

5

second

milli

¥
L]

M =M1

e

@
[
A8
L
o
O

IWNGT 3!

5

arver REe

g
a

250 275 300
imeseconds)

m validate_user_login ® create_schedule & update_user_details « Active User Count

* source: ZOHO QEngine White Paper: performance testing report analysis aAzuL

SYSTEMS
©2012 Azul Systems, Inc.

What happened here?

Hiccups by Time Interval

“l-liccups"

_.‘"; 99.90% ——99.99% ——Max

9000
__ 8000
(&)
8 7000
=
— 6000
[=
-2 5000
©

S 4000
()

g
ol I Y I I O O
1 Y A I O

20 40 60 120 140

0

Elapsed Time (sec)

* Source: Gil running an idle program and suspending it five times in the middle szuL

SSSSSSS

Common fallacies

@ Computers run application code continuously
@ Response time can be measured as work units/time
@ Response time exhibits a normal disfribution

@ “Glitches” or "Semi-random omissions” in measurement
dont have a big effect.

SSSSSSS

Hiccups are [typically]
strongly multi-modal

@ They dont look anything like a normal distribution

@ They usually look like periodic freezes

@ A complete shift from one mode/behavior to another
@ Mode A: "good”.

@ Mode B: "Somewhat bad”

® Mode C: “terrible”, ...

SSSSSSS

Common ways people deal with hiccups

SSSSSSSS

Common ways people deal with hiccups

Averages and Standard Deviation

‘ 99.7% between 13 s.d.

95.4% between t2 s.d.
Only 3 points in 1000

‘ 63.3% between 1 s.d. \
will fall outside the area

3 standard dewviations s.d. = standard deviation
either side of the center line.

AZUL

SYSTEMS

Better ways people deal with hiccups

Actually measuring percentiles

Hiccups by Percentile Distribution

= .
D (0] o A7
o o o4 O

D
o

o
(%]
E
=
o
B
©
S
=
(@]
Q
=
O
2
I

99.9% 99.99% 99.999% 99.9999%

Percentile

====Hiccups by Percentile SLA

AZUL

SYSTEMS

Requirements

Why we measure latency and response
times to begin with...

SSSSSSS

Latency tells us how long
something took

@ But what do we WANT the latency to be?
@ What do we want the latency to BEHAVE like?

@ Latency requirements are usually a PASS/FAIL test
of some predefined criteria

@ Different applications have different needs
@ Requirements should reflect application needs

@ Measurements should provide data fo evaluate
requirements

SSSSSSS

The Olympics

aka "ring the bell first”

@ Goal: Get gold medals
@ Need to be faster than everyone else at SOME races

@ Ok to be slower in some, as long as fastest at some
(the average speed doesnt matter)

@ Ok to not even finish or compete (the worst case and
99%'ile dont matter)

@ Different strategies can apply. E.g. compete in only 3
races to not risk burning out, or compete in 8 races in
hope of winning two

SSSSSSS

Pacemakers

aka “hard” real time

@ Goal: Keep heart beating
® Need to never be slower than X

@ “Your heart will keep beating 99.9% of the time” is
not very reassuring

@ Having a good average and a nice standard deviation
dont matter or help

@ The worst case is all that matters

SSSSSSS

"Low Latency” Trading

aka “soft” real time

@ Goal: Be fast enough to make some good plays
@ Goal: Contain risk and exposure while making plays
@ E.g. want to "typically” react within 200 usec.

@ But cant afford to hold open position for 20 msec, or
react to 30msec stale information

@ So we want a very good "typical” (median, 50%'ile)

® But we also need a reasonable Max, or 99.99%'ile

SSSSSSS

Interactive applications

aka “squishy” real time
@ Goal: Keep users happy enough to not complain/leave

@ Need to have “typically snappy” behavior

@ Ok fo have occasional longer times, but not too high,
and not too often

@ Example: 90% of responses should be below 0.5sec,
99% should be below 2 seconds, 99.9 should be better
than 5 seconds. And a >10 sec. response should never
happen.

@ Remember: A single user may have 100 interactions
per session... AZUL

SSSSSSS

Establishing Requirements

an interactive interview (or thought) process

@ Q: What are your latency requirements?

@ A: We need an avg. response of 20msec

@ Q: Ok. Typical/average of 20msec... So what is the worst case requirement?
@ A: We dont have one

@ Q: So its ok for some things to take more than 5 hours?

@ A: No way!

@ Q: So I'll write down "5 hours worst case...”

@ A: No... Make that “nothing worse than 100 msec”

® Q: Are you sure? Even if its only three times a day?

@ A: Ok.. Make it “nothing worse than 2 seconds...”

AZUL

SYSTEMS
©2012 Azul Systems, Inc.

Establishing Requirements

an interactive interview (or thought) process

@ OK. So we need a typical of 20msec, and a worst case of 2 seconds. How often is
it ok to have a 1 second response?

@ A: (Annoyed) I thought you said only a few times a day

@ Q: Right. For the worst case. But if half the results are better than 20msec, is it
ok For the other half to be just short of 2 seconds? What % of the time are you
willing fo take a 1 second, or a half second hiccup? Or some other level?

@ A: Oh. Lets see. We have to better than 50msec 90% of the time, or we'll be
losing money even when we are fast the rest of the time. We need to be better
than 500msec 99.9% of the time, or our customers will complain and go
elsewhere

@ Now we have a service level expectation:

® 50% better than 20msec
@ 90% better than 50msec
& 99.9% better than 500msec
® 100% better than 2 seconds

©2012 Azul Systems, Inc.

AZUL

SYSTEMS

Remember this?

How much load can this system handle?

Response
time

Where users
complain

_ Unacceptable (poor) response time

decreasing resource availability

SSSSSSS

Sustainable Throughput:
The throughput achieved while
safely mamtalnmg serwce levels

L)

©2012 Azul Syste

Instance capacity test: "Fat Portal”
HotSpot CMS: Peaks at ~ 3GB / 45 concurrent users

Native @ 45 users with 3 GB heap

—e— SLA requirements
« Benchmark data

)
2]
L
)
E
[t
o]
£
:
[+ 4

99.9% 99.99% 99.999%

Percentile

* LifeRay portal on JBoss @ 99.9% SLA of 5 second response times
AZUL

SYSTEMS

12 Azul Systems, Inc

Instance capacity test: “"Fat Portal”
C4: still smooth @ 800 concurrent users

—o— SLA requirements

e Benchmark data

)
<
L
®
E
[t
®
@
c
°
=
@
<
-4

M
0 . I) I 1
1 99.9% 99.999%

Percentile

AZUL

SYSTEMS

The coordinated omission problem

An accidental conspiracy...

SSSSSSS

The coordinated omission problem

@ Common Example:

build/buy simple load tester to measure throughput

o
@ Iissue requests one by one at a certain rate

@ measure and log response time for each request
o

results log used to produce histograms, percentiles, etc.

@ So whats wrong with that?

@ works well only when all responses fit within rate interval
@ technique includes implicit "automatic backoff” and coordination

@ Butf requirements interested in random, uncoordinated requests

@ How bad can this gef, really?

SSSSSSS

Example of naive %’ile

System easily handles
100 requests/sec S)’Stem Sta”ed
for 100 Sec

Responds to each
in Imsec

-~J
o

D
o

How would you characterize this system!?

N
o

)
=
)
2
=
O
Q.
n
)
o

H
o

Overall Average response time is ~25 sec.

7 AN

Avg.is | msec Avg. is 50 sec.
over Ist 100 sec over next 100 sec

10 / \

0

w
o

20

0 S0 100 . 150 200 250
Elapsed Time

~50%‘ileis | msec ~75%'ile is 50 sec 99.99%'ile is ~100sec

Example of naive %’ile

System easily handles System Sta”ed
100 requests/sec
for 100 Sec

Responds to each
in Imsec

6

Naive Characterization

)
E
)
)
c
o
Q
n
Q
o

H
o

w
o

10,000 @ Imsec | @ 100 second

| /

0 S0 100 . 150 200 250
Elapsed Time

99.99% ile is | msec! Average.is 10.9msec! Std. Dev.is 0.99sec!
(should be ~100sec) (should be ~25 sec)

N
o

-d
o

0

Proper measurement

System easily handles System Stalled
100 requests/sec for 100 Sec

Responds to each
in Imsec

-~J
o

D
o

N
o

)
=
)
2
=
O
Q.
n
)
o

H
o

10,000 results
Varying linearly

10,000 results f"‘comlol00 sec /
@ | msec each o 10 msec

\ T

S0 100) 150
Elapsed Time

~50%‘ileis | msec ~75%'ile is 50 sec 99.99%'ile is ~100sec

w
o

N
o

-
o

o

The real world

[OVERALL], RunTime(ms), 2028755.0 _»*
[OVERALL], Throughput(ops/sec), 43294%31413108039
[UPDATE], Operations, 89999169 4%

[UPDATE], AveragelLatency(ms), 2.606116218695308

[UPDATE], MinLatency(ms), O

[UPDATE], MaxLatency(ms), 26182 -
[UPDATE], 95thPercentileLatency(ms);*&,
[UPDATE], 99thPercentileLatency(ms), 5 s,

SSSSSSS

The real world

A world record SPECjEnterprise2010 result

Response Times 90th% Reqd 90th%
Purchase 0.280 2.000

Manage 0.210 2.000

Browse 0.320 2.000
CreateVehicleEJB 0.610 5.000

CreateVehicleWS | 0.520 5.000

SSSSSSS

Suggestions

Lessons learned

@ Whatever your measurement technique is, test it.

® Run your measurement method against artificial
system that creates the hypothetical pauses
scenarios. See if your reported results agree with how
you would describe that system behavior

@ Dont waste time analyzing until you establish sanity
@ Dont use or derive from std. deviation.
@ Always measure Max time. Consider what it means.

® Measure % iles. Lots of them.

SSSSSSS

S
=
%)
£
(9}
o
@
>
n
=
N
<
[
-
N
©

HdrHistogram

If you want to be able to produce graphs like this...

Latency by Percentile Distribution

Max=137.472

100

(O))
o

o
Q
(7))

£
> 80
(@)

c
Q

)
(1]

)

N
o

N
o

o

90% 99% 99.9% 99.99% 99.999% 99.9999%

Percentile

You need a good dynamic range, and good
resolution, at the same ftime AZUL

SYSTEMS

©2012 Azul Systems, Inc.

HdrHistogram

@ A High Dynamic Range Histogram

@ Covers a configurable dynamic value range

@ At configurable precision (expressed as number of significant digits)

@ For Example:

® Track values between 1 microsecond and 1 hour

@ With 3 decimal points of resolution

@ Built-in compensation for Coordinated Omission

@ Open Source

@ On github, released to the public domain, creative commons CCO

SSSSSSS

HdrHistogram

@ Fixed cost in both space and fime

@ Built with “latency sensitive” applications in mind
@ Recording values does not allocate or grow any data structures

@ Recording values use a fixed computation to determine location (no
searches, no variability in recording cost, FAST)

@ Even iterating through histogram can be done with no allocation

@ Internals work like a “floating point” data structure

@ “Exponent” and "Mantissa”
@ Exponent determines "Mantissa bucket” to use

@ “"Mantissa buckets” provide linear value range for a given exponent.
Each have enough linear enfries to support required precision

SSSSSSS

HdrHistogram

® Provides tools for iteration

@ Linear, Logarithmic, Percentile

@ Supports percentile iterators

@ Practical due to high dynamic
range

@ Convenient percentile output

@ E.g. 10% intervals between 0 and
50%, 5% intervals between 50%
and 75%, 2.5% intervals between
75% and 87.5%, ...

@ Very useful for feeding percentile
distribution graphs...

©2012 Azul Systems, Inc.

0.003 0.000000000000
0.057 0.100000000000
0.058 0.200000000000
0.059 0.300000000000
0.060 0.400000000000
0.062 0.500000000000
0.064 0.550000000000
©.066 0.0600000000000
0.070 0.650000000000
1.230 0.700000000000
5.552 0.750000000000
7.712 @.775000000000
9.856 0.800000000000
12.016 0.825000000000
14.176 0.3850000000000
16.320 0.875000000000
17.408 0.837500000000
18.464 0.900000000000
19.5384 0.912500000000
20.832 @.925000000000
22.208 @.937500000000
22.976 0.943750000000
23.808 0.950000000000
24.736 0.956250000000
25.760 @.962500000000
26.830 @.968750000000
27.488 ©.9713875000000
28.160 0.975000000000
28.896 0.978125000000
29.696 0.931250000000
30.656 @.934375000000
31.200 @.985937500000
31.776 0.937500000000
32.3384 0.989062500000
33.088 0.990625000000

Value, Percentile, TotalCountIncludingThisValue

7
807222
1235747
1694413
1994719
2373326
2620309
2795011
3036116
3228296
3458862
3574491
3689655
3805210
3920746
4036366
4094471
4150910
4209006
4267165
4324157
4352952
4381652
4410732
4439554
4467918
4482272
4496305
4511389
4525422
4539989
4547261
4554465
4561328
4569070

AZUL

SYSTEMS

HdrHistogram

Latency by Percentile Distribution

Max=137.472

=
o
o

(O))
o

o
Q
(7))

£
> 80
(@)

c
Q

)
(1]

)

N
o

N
o

o

90% 99% 99.9% 99.99% 99.999% 99.9999%

Percentile

AZUL

SYSTEMS
©2012 Azul Systems, Inc.

S
=
%)
£
(9}
o
@
>
n
=
N
<
[
-
N
©

©2012 Azul Systems, Inc.

Hiccup Duration (msec)

[
o N
o O
o O

o
o

o
[=)

(=]
o

Hiccup Duration (ms

Incontinuities in Java platform execution

Hiccups by Time Interval

——Max per Interval ===99% ===99.90% ===99.99% ====Max

o
1] T |

T e

A AN

0

Elapsed Time (sec)

Hiccups by Percentile Distribution

Max=1665.024

99.9% 99.99% 99.999%

Percentile

AZUL

SYSTEMS

JHiccup

@ A tool for capturing and displaying platform hiccups

@ Records any observed non-continuity of the underlying platform

@ Plots results in simple, consistent format

@ Simple, non-intrusive
@ As simple as adding the word "jHiccup” to your java launch line
@ % jHiccup java myflags myApp
@ (Or use as a java agent)

@ Adds a background thread that samples time @ 1000/sec

@ Open Source

® Released to the public domain, creative commons CCO

SSSSSSS

©2012 Azul Systems, Inc.

A

Hiccup Duration {msel

Hiccup Duration ;;_::"Je)

Telco App Example

Hiccups by Time Interval

J_II

|\|\-m—m—m

Illllll

LI
0

.n.M. u.l‘nu‘ TV AY

1000 1500
Elapsed Time (sec)

. _ Hiccups by Percentile Distribution

99% 99.9% 99.99% 99.999%

Percentile

====Hiccups by Percentile

99.9999%

AZUL

SYSTEMS

S
=
%)
£
(9}
o
@
>
n
=
N
<
[
-
N
©

|dle App on Quiet System |dle App on Busy System

Hiccups by Time Interval Hiccups by Time Interval

——Max per Interval ===99% ===99.90% ===99.99% ===Max —Max per Interval ===99% ===99.90% ===99.99% ===Max

]
o

Ul
o

N
o

N
o

Hiccup Duration (msec)

=
o

Hiccup Duration (msec)
w
o

T
Lo WV

400
Elapsed Time (sec)

o

Hiccups by Percentile Distribution

D
o

N

o
Ul
o

Max=49.728

IS
o

[E
52

N
o

Hiccup Duration (msec)
Hiccup Duration (msec)
w
o

/

99% 99.9% 99.99% 99.999% 90% 99% 99.9% 99.99% 99.999%

=
o

/

Percentile Percentile

AZUL

SYSTEMS
©2012 Azul Systems, Inc.

|dle App on Quiet System

Hiccups by Time Interval

—— Max per Interval

==99%

==99.90%

===00.99% ==Max

Hiccup Duration (msec)

N
o

[E
52

=
o

Hiccup Duration (msec)

(65}

/

©2012 Azul Systems, Inc.

99%

99.9%

Percentile

99.99%

99.999%

Hiccup Duration (msec)

Hiccup Duration (msec)

o
© w ©
w a >

o o
N ¥
a N ;g

o
o ©
o G R

© o o
() w >

o©
=

|dle App on Dedicated System

Hiccups by Time Interval

—Max per Interval ===99% ===99.90% ===99.99% ===Max

T T T

500 600 700
Elapsed Time (sec)

Hiccups by Percentile Distribution

Max=0.411

[

—J

99.9% 99.99% 99.999%

Percentile

AZUL

SYSTEMS

©2012 Azul Systems, Inc.

Hiccup Duration (msec)
= = N N w
o u o Ul o
o o o o o
o o o o o

EHCache: 1GB data set under load

Hiccups by Time Interval

— Max per Interval ===99% ===9990% ===99.99% ===MaXx

I I R R I
—

0 500 1000 1500 2000
Elapsed Time (sec)

Hiccups by Percentile Distribution

99.9% 99.99% 99.999% 99.9999%

Percentile

AZUL

SYSTEMS

Fun with jHiccup

Charles Nutter « headius 20 Jan
\ jHiccup, @AzulSystems' free tool to show you why your JVM sucks

compared to Zing: bit.ly/wsH5A8 (thx @bascule)

L3 Retweeted by Gil Tene

SSSSSSS

Oracle HotSpot CMS, 1GB in an 8GB heap

Hiccups by Time Interval

— Max per Interval ===99% ===99.90% ===99.99% ===Max

500 1000 1500 2000 2500 3000 3500
Elapsed Time (sec)

©2012 Azul Systems, Inc.

99.9% 99.99% 99.999%

Percentile

" Hiccup Duration (msec)

Hiccup Duration (msec)

Zing 5, 1GB in an 8GB heap

Hiccups by Time Interval

—Max per Interval ===99% ===99.90% ===99.99% ===Max

1000 1500 2000 2500 3000 3500
Elapsed Time (sec)

Hiccups by Percentile Distribution

90% 99% 99.9% 99.99% 99.999% 99.9999%

Percentile

AZUL

SYSTEMS

Oracle HotSpot CMS, 1GB in an 8GB heap

Hiccups by Time Interval

— Max per Interval ===99% ===99.90% ===99.99% ===Max

Hiccup Duration (msec)

500 1000 1500 2000 2500 3000 3500
Elapsed Time (sec)

Hiccups by Percentile Distribution

Hiccup Duration (msec)

©2012 Azul Systems, Inc.

99.9% 99.99% 99.999%

Percentile

Drawn fto

Hiccup Duration (msec)

Hiccup Duration (msec)

N B D (e}
o o o o
o o o o
o o o o

o

0

Zing 5, 1GB in an 8GB heap

Hiccups by Time Interval

—Max per Interval ===99% ===99.90% ===99.99% ===Max

500 1000 1500 2000 2500 3000
Elapsed Time (sec)

Hiccups by Percentile Distribution

0%

Max229.384 99% 99.9% 99.99% 99.999%

Percentile

99.9999%

AZUL

SYSTEMS

What you can expect (from Zing)
in the low latency world

@ Assuming individual transaction work is “short” (on
the order of 1 msec), and assuming you dont have
100s of runnable threads competing for 10 cores...

@ “Easily” get your application to < 10 msec worst case
@ With some tuning, 2-3 msec worst case

@ Can go to below 1 msec worst case...
@ May require heavy tuning/tweaking

@ Mileage WILL vary

SSSSSSS

Hiccup Duration (msec)

N
(6] /
| P

N
o
1

10 -

Hiccups by Time Interval

—Max per Interval ===99% ===99.90% ===99.99% ===Max

ﬂ |l L

TPARRARCER A

100 200 300 400 500 600
Elapsed Time (sec)

Hiccups by Percentile Distribution

Hiccup Duration (msec)

0%

90% 99% 99.9% 99.99% 99.999%

Percentile

=
[

—~ 1.6

Hiccup Duration (msec
© o o o =P
O N D OO O R, N B

Hiccups by Time Interval

—Max per Interval ===99% ===99.90% ===99.99% ===Max

100 200 300 400 500
Elapsed Time (sec)

Hiccups by Percentile Distribution

600

0.6
3 /
(8}
T 0.4 >
0 - ; ; ; ; ;
0% 90% 99% 99.9% 99.99% 99.999%
Percentile

Oracle HotSpot (pure newgen)

Hiccups by Time Interval Hiccups by Time Interval

— Max per Interval ===99% ===99.90% ===99.99% ===Max —Max per Interval ==99% ===99.90% ===99.99% ===Max

N

(9]
N
(92]

N
o

N
o

[uny
(€]

[EnY
o

Hiccup Duration (msec)

(6,]

Hiccup Duration (msec)

|'-“||

300 400

Elapsed Time (sec) Elapsed Time (sec)

Hiccups by Percentile Distribution Hiccups by Percentile Distribution

Max=22.656

N
o

N
o

=
(5]

[uny
(€]

Hiccup Duration (msec)
Hiccup Duration (msec)

Max=1.568

———

r r r y #ﬁ— r
99.9% 99.99% 99.999% 90% 99.9% 99.99% 99.999%

Percentile Percentile

Low latency - Drawn fo scale

SYSTEMS
©2012 Azul Systems, Inc.

AZUL

Takeaways

@ Standard Deviation and application latency should
never show up on the same page...

@ If you havent stated percentiles and a Max, you
havent specified your requirements

@ Measuring throughput without latency behavior is
[usually] meaningless

@ Mistakes in measurement/analysis can lead to orders-
of-magnitude errors and lead to bad business decisions

@ jHiccup and HdrHistogram are generically useful

@ The Zing JVM is cool...

SSSSSSS

Q&A

http://www.azulsystems.com

http://www.jhiccup.com

http://qgiltene.github.com/HdrHistogram

http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com

