Abstract

Specialized hardware is giving architects new highefficiency options to accelerate the WAN and avoid "long fat network" problems. This session will explore how network processors, FPGAs, flash storage, ultra capacitors, and other exotic silicon is increasing the capabilities and performance of WAN-based applications. Specific use cases include Distributed Message Routing, Web Data Streaming, Sensor Nets, and Active/Active Data Grid Replication.

Slace Systems[™]

Distributed Data Fabrics and Hardware WAN Optimization

Achieving 10X WAN Efficiency in Globally Distributed Applications

Hans Jespersen

Systems Engineer

hans.jespersen@solacesystems.com

© Solace Systems CONFIDENTIAL

Agenda

- o Introduce the use case
- o TCP/IP and the Long Fat Network Problem
- o Technology & Industry Trends
- How do traditional WANop solutions help (HW & SW)
- o What isn't addressed with network layer WANop
- Message Brokers and application specific WANop
- o Advanced Silicon and Exotic Hardware
- Benchmarking Performance
- o Q&A

Real-time Streaming Big Data

Need is for efficiently collecting, aggregating and moving large amounts of streaming machine generated data from **multiple sources** to **multiple data stores** across **multiple locations**.

Old Faithful

What do we get?

- o Reliable
- Ordered delivery (of a stream of octets)
- o Error-free data transfer
- o Flow control
- o Congestion control

Everything comes with a price

A Wide Area Network (WAN) is not just a slow LAN! A Wide Area Network (WAN) is not just a slow LAN! A Wide Area Network (WAN) is not just a slow LAN! A Wide Area Network (WAN) is not just a slow LAN! A Wide Area Network (WAN) is not just a slow LAN! A Wide Area Network (WAN) is not just a slow LAN! A Wide Area Network (WAN) is not just a slow LAN! A Wide Area Network (WAN) is not just a slow LAN! A Wide Area Network (WAN) is not just a slow LAN! A Wide Area Network (WAN) is not just a slow LAN! A Wide Area Network (WAN) is not just a slow LAN! A Wide Area Network (WAN) is not just a slow LAN! A Wide Area Network (WAN) is not just a slow LAN! A Wide Area Network (WAN) is not just a slow LAN! A Wide Area Network (WAN) is not just a slow LAN!

The LFN (Elephant) in the room

Throughput != Bandwidth

- o Bandwidth
- o Latency (RTT)
- o Error Rate (Loss)

• Handy online calculators of effective throughput

http://www.silver-peak.com/calculator/

CALCULATOR

WAN Throughput Calculator

This calculator is used to measure the effect that bandwidth, latency and packet loss have on effective WAN throughput. The measurements are used to approximate this metric on a per flow basis. While certain applications can take advantage of multiple flows for increased throughput, other applications (e.g. data replication) require high throughput on each individual flow.

1024 Mbps
100 🔻 ms
0.5 %
Calculate
ve Throughput (per flow): 1.65 Mbps

Below are common latency and loss metrics:

LATENCY	
LAN	5 ms
Western US to Eastern US	80-100 ms
International	100-200 ms
Satellite	500+ ms
LOSS	
LAN	0%
Private Line	0%
MPLS	.1 to .5%
IP VPN	.5 to 1%

Why is this problem growing?

- o Globalization 1. Bandwidth
- Public Internet backbone 2. Latency (RTT)
- RDBMS -> NoSQL, IMDG
 Error Rate (Loss)
- o Rich Data Types
- o Mobile Apps
- o Client Side Data
- DR and BCP

Traditional WAN optimization techniques

- Deduplication
- Compression
- Latency optimization
- Caching/proxy
- Forward error correction
- Protocol spoofing
- Traffic shaping
- Equalizing / Prioritizing
- Connection limiting
- Rate limiting

Bi-directional Message Streaming Hardware Compression Multiple Parallel Connections

Offloading the IP Stack to Hardware

Cavium Octeon II

32 core MIPS64 Processor

Pre-built application acceleration engines

- Packet Processing
- Encryption/Decryption
- Deep Packet Inspection (RegEx)
- Compression/decompression
- De-duplication
- RAID

Millions of concurrent connections

Improving the Speed of GoldenGate Synchronization

• Real customer results

- Tested synchronization over a 622 Mbps link between New York and London with 75 ms round trip time
- And over a 45 Mbps link between New York and Tokyo with 175 round trip time

o Solace 18x Faster

Transactions != Packets Database Records != Packets Objects != Packets

The Modern Information Distribution Fabric

Messaging Middleware Value

- Producer/Consumer Decoupling
- Disconnected Operation
- Location Independence
- Multipoint Delivery
- Advanced Filtering & Routing
- Message-based Granularity

Messaging layer on top of your IP network, so you can make messaging a shared optimized service.

FPGA

Xilinx Virtex-7 2000T FPGA

- More than twice the capacity and bandwidth offered by the largest monolithic devices
- 2 million logic cells (equivalent to 20 million ASIC gates)
- 6.8 billion transistors

Horizontal scalability on a single chip

Intel Westmere-EX

- 2.6 billion transistors
- 10 64-bit cores @ 2.4 GHz
- 7,200 MIPS
- 130 watts TDP

Xilinx Virtex-7 2000T FPGA

- 6.8 billion transistors
- 3,600 8-bit processors @ 100 MHz
- 180,000 MIPS
- 20 watts TDP

Reliable Messaging

Pure hardware solution 0

- No operating system
- No context switching
- No interrupts
- No data copies

10 million messages/second 0

Can be any combination, e.g. • 5M in & 5M out, 2M in & 8M out

Messages per Second

Bulk Message	Message Size (bytes)	Message Rate (msgs/sec)	User Payload Bandwidth (Mbps)	
Rate	100	5,930,000	4,744	
	500	2,080,000	8,320	
	1,000	1,080,000	8,640	10GigE
	12,000	92,000	8,832	the is Limit
	30,000	34,000	8,160	

of

In Memory Message Caching

Non-persistent last-value cache can handle any payload

- Cache by number or timeframe
- Can run on appliance, or as a 64-bit app on a Linux server
- Centralized management of all caches.
- Clustering for load balancing and redundancy
- Support wildcard requests
- Request/reply with the cache, and control of synchronization of cache requests
- Topic names partitioned amongst instances to scale storage

Cascading Cache

Incremental Updates

Cache Contents for NY/EQ/JNPR

SYMBOL: JNPR

VENUE: NYSE

LAST: 19.19

VOLUME: 31,870

DAY LOW: 19.03

DAY HIGH: 19.21

52-WEEK LOW: 15.13

52-WEEK HIGH: 23.98

Updated Cache Contents

SYMBOL: JNPR

VENUE: NYSE

LAST: 19.19

VOLUME: 31,870

DAY LOW: 19.03

DAY HIGH: 19.21

52-WEEK LOW: 15.13

52-WEEK HIGH: 23.98

Hybrid Storage

Fault Tolerant Clustering of Messaging Nodes

Multiple Datacenters and Disaster Recovery

Automatic replication of: 0

- **Client-created endpoints**
- Configuration data •
- Transactional state •
- **Needs Configurability for** 0 Sync & Asynchronous replication

Guaranteed Messaging; Store & Forward Performance

- Failsafe w/o overhead of persisting every message to disk
- 205K msgs/sec ingress and 205K msgs/sec egress
- Up to 4.5 Gbps of guaranteed messaging bandwidth
- Consistent latency even when servicing slow or recovering subscribers

	Message Size (bytes)	Message Rate (msgs/sec)	User Payload Bandwidth (Mbps)
Bulk	100	206,400	165
Maaaaa	512	206,400	845
message	1,024	202,000	1,655
Rate	2,048	157,500	2,580
	4,096	124,400	4,076
	10,240	53,400	4,375
	20,480	27,500	4,506
	51,200	11,000	4,506

Guaranteed Messaging; Fan-out performance

Message Size (bytes)	Egress Rate, 1 client/msg (msgs/sec)	Egress Rate, 4 clients/msg (msgs/sec)	Egress Rate, 10 clients/msg (msgs/sec)	Egress Rate, 50 clients/msg (msgs/sec)
512	206,400	422,000	756,000	1,035,000
1,024	202,000	464,000	744,000	985,000
2,048	157,500	390,000	519,000	536,000
4,096	124,400	212,000	250,000	278,000
10,240	53,400	88,300	101,000	110,000
20,480	27,500	53,500	52,200	54,150
51,200	11,000	21,400	21,300	21,600

Offline or Slow Consumer Handling

Micro-

- o Publisher rates not affected by slow/offline consumers
- Fast consumers not affected in rate or latency by slow/offline consumers
- Re-connected subscribers "catch up" without impacting other clients
- Behavior & performance cannot be matched by seconds of Latency software due to patented technology

Optimized In-memory Grid Replication

Single Infrastructure for Grid Synchronization:

- inherently one-to-many, so can propagate to many other sites/instances – either locally or over the WAN
- Supports DR, Active/Passive, or Active/Active architectures

Solace as an Appliance Platform

- Messaging all in hardware
- General purpose processors used to run 3rd party software that interacts seamlessly with hardware messaging internally
- Integration is easy with JMS
- Enables flexible solution options within an appliance

APIs: JMS,C, .Net, Java, JavaScript, Flash, Silverlight, iOS, Node.js, Ruby, Python, etc.

The Modern Information Distribution Fabric

High Volume Onboarding

Fast, Efficient WAN Sync

