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About CAP

a.k.a. Brewer’s Conjecture

a.k.a.  Theorem that Shipped
1,000 Launches
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“Brewer's conjecture and the 
feasibility of consistent, available, 
partition-tolerant web services.”

Seth Gilbert and Nancy Lynch.
SIGACT News 33, 2 (June 2002), 51-59. DOI=10.1145/564585.564601 
http://doi.acm.org/10.1145/564585.564601
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Consistency

Availability
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Choose Two
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BEWARE BAD LOGIC

C ∩ P → ¬A
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BEWARE BAD LOGIC

C ∩ P → ¬A

A ∩ P → ¬C
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BEWARE BAD LOGIC

⊭¬C → A

C ∩ P → ¬A

A ∩ P → ¬C
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CAP
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CAP

Gödel’s Incompleteness Theorem
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CAP

Gödel’s Incompleteness Theorem

Heisenberg’s Uncertainty Principle
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CAP

GIT

HUP
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They’re a drag!
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The Network
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Asynchronous
Message-passing
Network
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n2
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n2

→ write 12

← ack

→ read

← 12

→ read

← 12

→ write 20

← ack
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Atomic
Linearizable
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Partitioning
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G1 = {n1, n2, n3, n4, 
n5, n6, n7, n16, 
n17, n18, n19, 
n20}

G2 = {n8, n9, n10, n11, 
n12, n13, n14, 
n15}
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Theorem
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Shared atomic object

Network divided into {G1, G2}

All messages between G1 and G2 are lost

Asynchronous message-passing network
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Suppose algorithm A meets all 3 of C, A, & P.
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v0

time

write
v1 G1

α1
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v0

time

read
←v0

G2

α2

Thursday, November 8, 12



v0

time

write
v1 G1

read
←v0

G2

α = α1 + α2
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loophole
noun
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loophole
noun

1. A way of escaping a difficulty, especially an 
omission or ambiguity in the wording of a 
contract or law that provides a means of 
evading compliance.
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loophole
noun

1. A way of escaping a difficulty, especially an 
omission or ambiguity in the wording of a 
contract or law that provides a means of 
evading compliance.

2. A small hole or slit in a wall, especially one 
through which small arms may be fired.
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Loophole 1
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HQ9+
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H Prints “Hello, World!”

Q Prints source text

9 Prints lyrics to 99 
bottles+ Increments the register

Thursday, November 8, 12



H Prints “Hello, World!”

Q Prints source text

9 Prints lyrics to 99 
bottles+ Increments the register

Thursday, November 8, 12



H Prints “Hello, World!”

Q Prints source text

9 Prints lyrics to 99 
bottles+ Increments the register

Thursday, November 8, 12



H Prints “Hello, World!”

Q Prints source text

9 Prints lyrics to 99 
bottles+ Increments the register
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Distributed HQ9+
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H Prints “Hello, World!”
Q Prints source text

9 Prints lyrics to 99 bottles

+ Increments the distributed 
register
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H Prints “Hello, World!”
Q Prints source text

9 Prints lyrics to 99 bottles

+ Increments the distributed 
register
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Loophole 2
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Write Once,
Immutable Thereafter
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“Reading from immutable data 
is really fun, easy, and trivially 
consistent.”

-- Eric Brewer, about an hour ago
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v0

time

G1

G2
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v0

time

G1

G2

read
←v0

read
←v0

read
←v0
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←v0
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v0

time

G1

G2
read
←v0

read
←v0

read
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read
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read
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read
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A = v0

time

read A
←v0

G1

read B
←w0 G2

new
C, X

read B
←w0

read C
←X

read A
←v0

B = w0
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A = v0

time

read A
←v0

G1

read B
←w0 G2

new
C, X

read B
←w0

read C
←X

read A
←v0

B = w0
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A bit of trickery?
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Loophole 3
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An older definition
of consistency
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The data base consists of entities which are 

related in certain ways.  These relationships 

are best thought of as assertions about the 

data.
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Examples of such assertions are:

“Names is an index for 
Telephone_numbers.”

“The value of Count_of_X gives the 
number of employees in department X.”
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The data base is said to be consistent if it 

satisfies all its assertions. In some cases, 

the data base must become temporarily 

inconsistent in order to transform it to a 

new consistent state.

From "Granularity of Locks and Degrees of Consistency in a 
Shared Data Base",
J.N. Gray, R.A. Lorie, G.R. Putzolu, I.L. Traiger, 1976

Thursday, November 8, 12



The data base is said to be consistent if it 

satisfies all its assertions. In some cases, 

the data base must become temporarily 

inconsistent in order to transform it to a 

new consistent state.

From "Granularity of Locks and Degrees of Consistency in a 
Shared Data Base",
J.N. Gray, R.A. Lorie, G.R. Putzolu, I.L. Traiger, 1976

From "Granularity of Locks and Degrees of Consistency in a 
Shared Data Base",
J.N. Gray, R.A. Lorie, G.R. Putzolu, I.L. Traiger, 1976

Thursday, November 8, 12



Consistency is a predicate C on entities and 

their values. The predicate is generally not 

known to the system but is embodied in the 

structure of the transactions.

From "Transactions and Consistency in Distributed 
Database Systems",
I.L. Traiger, J.N. Gray, C.A. Galtieri, and B.G. Lindsay, 1982
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Can this kind of consistency 
be maintained in a 
distributed system?
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V = v0

time

G1

G2
read V
 ←v0

read X
←x1

X = x0

write
X, x1

write 
V, v1

Thursday, November 8, 12



V = v0

time

G1

G2
read V
 ←v0

read X
←x1

read V
 ←v0

write 
V, v1

write
X, x1

read X
←x1

X = x0

write
X, x1

write 
V, v1
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C
R
D
T
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C
R
D
T

Commutative
Replicated
Data
Type
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Loophole 4
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Partition A: <Ca, Ga, a1, a2, …, an>
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Partition A: <Ca, Ga, a1, a2, …, an>

Ca Consistency predicate over a1… an

Ga Subset of nodes in network

ai Value of variable i

Thursday, November 8, 12



Partition A: <Ca, Ga, a1, a2, …, an>

Ca Consistency predicate over a1… an

Ga Subset of nodes in network

ai Value of variable i

Thursday, November 8, 12



Partition A: <Ca, Ga, a1, a2, …, an>

Ca Consistency predicate over a1… an

Ga Subset of nodes in network

ai Value of variable i

Thursday, November 8, 12



Partition A: <Ca, Ga, a1, a2, …, an>

Ca Consistency predicate over a1… an

Ga Subset of nodes in network

ai Value of variable i

Thursday, November 8, 12



Partition A: <Ca, Ga, a1, a2, …, an>
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Partition A: <Ca, Ga, a1, a2, …, an>
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Partition A: <Ca, Ga, a1, a2, …, an>

Partition B: <Cb, Gb, b1, b2, …, bm>
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Ga Gb

WAN 

LOHRs LOHRs
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Loophole 5

Thursday, November 8, 12



Bounded Consistency
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Core
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Core Nebula
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RDBMS
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RDBMS

Memcached
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Item Display
A & P

Heavy caching

Bid History
C & P

Strong consistency
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Loophole 6
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Stop building 
distributed systems
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Loophole 7
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Get a better network!
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Asynchronous message passing
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Asynchronous message passing

That’s UDP!
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Semi-synchronous network

Lost messages are detected after time t
(by a missed acknowledgement)
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“Delayed-t Consistency”

A partial ordering P orders all writes, and all reads 
with respect to writes.

The value of every read is the one written by the 
previous write, where “previous” is under P.

The order in P is consistent with the order of read 
and write requests at each node.

If all messages are delivered and an operation θ 
completes before Φ begins, then Φ does not 
precede θ in P.

Assume an interval greater than t in which no 
messages are lost. Further assume that θ begins 
before the interval and Φ begins after the interval 
ends. Then Φ does not precede θ in P.
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“Delayed-t Consistency”
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“Eventual   Consistency”
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Loophole 7
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Loophole 7×
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Loophole 8
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Loophole 8
Use the Force
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Relativistic Quantum Field Theory
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GPS
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Loophole 9
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Redefine availability
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Normal 
Operation

Partition 
Detected

Query

Alter

Available Available

Available Not 
available
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ASYMMETRY OF TIME

Send
Request
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Send
Request

100 ms 200 ms

ASYMMETRY OF TIME
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Send
Request

100 ms 200 ms 300 ms 400 ms 500 ms 600 ms Time
Out

ASYMMETRY OF TIME
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Send
Request

100 ms 200 ms 300 ms 400 ms 500 ms 600 ms Time
Out

Response
Arrives

ASYMMETRY OF TIME
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To the observer, there is no 
difference between “too 
slow” and “not there”.
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Partition?

L 

C
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Partition?

Availability

Consistency
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Partition?
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Partition?

Availability

Consistency

Latency 

Consistency
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vs vs

L 
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Loophole 10
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OBSERVABLE CONSISTENCY
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Porky Pig’s Window Shade

If Porky Pig is looking at the window 
shade, it will be down.

If he is looking away from the window 
shade, it will be up.
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FIRST DIMENSION

X1 = {looking, not looking}
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SECOND DIMENSION

X1 = {looking, not looking}

X2 = {shade open, shade closed}
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FORBIDDEN STATES

X1 = {looking, not looking}

X2 = {shade open, shade closed}
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Back to “consistency” as a 
predicate over the state space
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time
t11 t12
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Back to CAP
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None of these make 
CAP “untrue”
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None of these make 
CAP “untrue”

Some of them operate under 
different assumptions.
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Some of them are totally 
impractical.
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Some of them are totally 
impractical.

Some of them are in 
production today.
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Finally, I’ll close with this bit of 
code:
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Finally, I’ll close with this bit of 
code:

QHH9Q+++
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mtnygard@thinkrelevance.com

@mtnygard
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Relevance, Inc.

Thursday, November 8, 12

mailto:mtnygard@thinkrelevance.com
mailto:mtnygard@thinkrelevance.com

