
EXPLOITING LOOPHOLES
IN CAP

Michael T. Nygard
Relevance, Inc.

Thursday, November 8, 12

About CAP

a.k.a. Brewer’s Conjecture

a.k.a. Theorem that Shipped
1,000 Launches

Thursday, November 8, 12

“Brewer's conjecture and the
feasibility of consistent, available,
partition-tolerant web services.”

Seth Gilbert and Nancy Lynch.
SIGACT News 33, 2 (June 2002), 51-59. DOI=10.1145/564585.564601
http://doi.acm.org/10.1145/564585.564601

Thursday, November 8, 12

http://doi.acm.org/10.1145/564585.564601
http://doi.acm.org/10.1145/564585.564601

Thursday, November 8, 12

Thursday, November 8, 12

Consistency

Thursday, November 8, 12

Consistency

Availability

Thursday, November 8, 12

Consistency

Availability

Partition-Tolerance

Thursday, November 8, 12

Consistency

Availability

Partition-Tolerance

Choose Two

Thursday, November 8, 12

BEWARE BAD LOGIC

C ∩ P → ¬A

Thursday, November 8, 12

BEWARE BAD LOGIC

C ∩ P → ¬A

A ∩ P → ¬C

Thursday, November 8, 12

BEWARE BAD LOGIC

⊭¬C → A

C ∩ P → ¬A

A ∩ P → ¬C

Thursday, November 8, 12

Thursday, November 8, 12

CAP

Thursday, November 8, 12

CAP

Gödel’s Incompleteness Theorem

Thursday, November 8, 12

CAP

Gödel’s Incompleteness Theorem

Heisenberg’s Uncertainty Principle

Thursday, November 8, 12

CAP

GIT

HUP

Thursday, November 8, 12

They’re a drag!

Thursday, November 8, 12

The Network

Thursday, November 8, 12

Asynchronous
Message-passing
Network

Thursday, November 8, 12

Thursday, November 8, 12

Consistency

Thursday, November 8, 12

Thursday, November 8, 12

n2

Thursday, November 8, 12

n2

→ write 12

← ack

→ read

← 12

→ read

← 12

→ write 20

← ack

Thursday, November 8, 12

n2

→ write 12

← ack

→ read

← 12

→ read

← 12

→ write 20

← ack

Thursday, November 8, 12

n2

→ write 12

← ack

→ read

← 12

→ read

← 12

→ write 20

← ack

Thursday, November 8, 12

n2

→ write 12

← ack

→ read

← 12

→ read

← 12

→ write 20

← ack

Thursday, November 8, 12

n2

→ write 12

← ack

→ read

← 12

→ read

← 12

→ write 20

← ack

Thursday, November 8, 12

n2

→ write 12

← ack

→ read

← 12

→ read

← 12

→ write 20

← ack

Thursday, November 8, 12

n2

→ write 12

← ack

→ read

← 12

→ read

← 12

→ write 20

← ack

Thursday, November 8, 12

n2

→ write 12

← ack

→ read

← 12

→ read

← 12

→ write 20

← ack

Thursday, November 8, 12

n2

→ write 12

← ack

→ read

← 12

→ read

← 12

→ write 20

← ack

Thursday, November 8, 12

n2

→ write 12

← ack

→ read

← 12

→ read

← 12

→ write 20

← ack

Thursday, November 8, 12

n2

→ write 12

← ack

→ read

← 12

→ read

← 12

→ write 20

← ack

Thursday, November 8, 12

Thursday, November 8, 12

n2

write 12

read

read

write 20

Thursday, November 8, 12

n2

write 12

read

read

write 20

n11

write 12

read

read

write 20

Thursday, November 8, 12

n2

write 12

read

read

write 20

n11

write 12

read

read

write 20

n17

write 12

write 9

read

write 20

Thursday, November 8, 12

n2

write 12

read

read

write 20

n11

write 12

read

read

write 20

n17

write 12

write 9

read

write 20

×
Thursday, November 8, 12

Atomic
Linearizable

Thursday, November 8, 12

Thursday, November 8, 12

Availability

Thursday, November 8, 12

Thursday, November 8, 12

n2

Thursday, November 8, 12

n2

→ write 12

← ack

→ read

← 12

→ read

→ write 20

Thursday, November 8, 12

n2

→ write 12

← ack

→ read

← 12

→ read

→ write 20

Thursday, November 8, 12

n2

→ write 12

← ack

→ read

← 12

→ read

→ write 20

Thursday, November 8, 12

n2

→ write 12

← ack

→ read

← 12

→ read

→ write 20

Thursday, November 8, 12

n2

→ write 12

← ack

→ read

← 12

→ read

→ write 20

Thursday, November 8, 12

n2

→ write 12

← ack

→ read

← 12

→ read

→ write 20

Thursday, November 8, 12

n2

→ write 12

← ack

→ read

← 12

→ read

→ write 20

Thursday, November 8, 12

n2

→ write 12

← ack

→ read

← 12

→ read

→ write 20

Thursday, November 8, 12

n2

→ write 12

← ack

→ read

← 12

→ read

→ write 20

Thursday, November 8, 12

n2

→ write 12

← ack

→ read

← 12

→ read

→ write 20

Thursday, November 8, 12

n2

→ write 12

← ack

→ read

← 12

→ read

→ write 20

Thursday, November 8, 12

Thursday, November 8, 12

Thursday, November 8, 12

Partitioning

Thursday, November 8, 12

Thursday, November 8, 12

Thursday, November 8, 12

G1 = {n1, n2, n3, n4,
n5, n6, n7, n16,
n17, n18, n19,
n20}

G2 = {n8, n9, n10, n11,
n12, n13, n14,
n15}

Thursday, November 8, 12

G1 = {n1, n2, n3, n4,
n5, n6, n7, n16,
n17, n18, n19,
n20}

G2 = {n8, n9, n10, n11,
n12, n13, n14,
n15}

Thursday, November 8, 12

Thursday, November 8, 12

Theorem

Thursday, November 8, 12

Shared atomic object

Network divided into {G1, G2}

All messages between G1 and G2 are lost

Asynchronous message-passing network

Thursday, November 8, 12

Suppose algorithm A meets all 3 of C, A, & P.

Thursday, November 8, 12

v0

time

write
v1 G1

α1

Thursday, November 8, 12

v0

time

read
←v0

G2

α2

Thursday, November 8, 12

v0

time

write
v1 G1

read
←v0

G2

α = α1 + α2

Thursday, November 8, 12

Thursday, November 8, 12

loophole
noun

Thursday, November 8, 12

loophole
noun

1. A way of escaping a difficulty, especially an
omission or ambiguity in the wording of a
contract or law that provides a means of
evading compliance.

Thursday, November 8, 12

loophole
noun

1. A way of escaping a difficulty, especially an
omission or ambiguity in the wording of a
contract or law that provides a means of
evading compliance.

2. A small hole or slit in a wall, especially one
through which small arms may be fired.

Thursday, November 8, 12

Loophole 1

Thursday, November 8, 12

HQ9+

Thursday, November 8, 12

Thursday, November 8, 12

H Prints “Hello, World!”

Q Prints source text

9 Prints lyrics to 99
bottles+ Increments the register

Thursday, November 8, 12

H Prints “Hello, World!”

Q Prints source text

9 Prints lyrics to 99
bottles+ Increments the register

Thursday, November 8, 12

H Prints “Hello, World!”

Q Prints source text

9 Prints lyrics to 99
bottles+ Increments the register

Thursday, November 8, 12

H Prints “Hello, World!”

Q Prints source text

9 Prints lyrics to 99
bottles+ Increments the register

Thursday, November 8, 12

Distributed HQ9+

Thursday, November 8, 12

H Prints “Hello, World!”
Q Prints source text

9 Prints lyrics to 99 bottles

+ Increments the distributed
register

Thursday, November 8, 12

H Prints “Hello, World!”
Q Prints source text

9 Prints lyrics to 99 bottles

+ Increments the distributed
register

Thursday, November 8, 12

Thursday, November 8, 12

Loophole 2

Thursday, November 8, 12

Write Once,
Immutable Thereafter

Thursday, November 8, 12

“Reading from immutable data
is really fun, easy, and trivially
consistent.”

-- Eric Brewer, about an hour ago

Thursday, November 8, 12

v0

time

G1

G2

Thursday, November 8, 12

v0

time

G1

G2

read
←v0

read
←v0

read
←v0

read
←v0

Thursday, November 8, 12

v0

time

G1

G2
read
←v0

read
←v0

read
←v0

read
←v0

read
←v0

read
←v0

read
←v0

Thursday, November 8, 12

A = v0

time

read A
←v0

G1

read B
←w0 G2

new
C, X

read B
←w0

read C
←X

read A
←v0

B = w0

Thursday, November 8, 12

A = v0

time

read A
←v0

G1

read B
←w0 G2

new
C, X

read B
←w0

read C
←X

read A
←v0

B = w0

Thursday, November 8, 12

A bit of trickery?

Thursday, November 8, 12

Loophole 3

Thursday, November 8, 12

An older definition
of consistency

Thursday, November 8, 12

The data base consists of entities which are

related in certain ways. These relationships

are best thought of as assertions about the

data.

Thursday, November 8, 12

Examples of such assertions are:

“Names is an index for
Telephone_numbers.”

“The value of Count_of_X gives the
number of employees in department X.”

Thursday, November 8, 12

The data base is said to be consistent if it

satisfies all its assertions. In some cases,

the data base must become temporarily

inconsistent in order to transform it to a

new consistent state.

From "Granularity of Locks and Degrees of Consistency in a
Shared Data Base",
J.N. Gray, R.A. Lorie, G.R. Putzolu, I.L. Traiger, 1976

Thursday, November 8, 12

The data base is said to be consistent if it

satisfies all its assertions. In some cases,

the data base must become temporarily

inconsistent in order to transform it to a

new consistent state.

From "Granularity of Locks and Degrees of Consistency in a
Shared Data Base",
J.N. Gray, R.A. Lorie, G.R. Putzolu, I.L. Traiger, 1976

From "Granularity of Locks and Degrees of Consistency in a
Shared Data Base",
J.N. Gray, R.A. Lorie, G.R. Putzolu, I.L. Traiger, 1976

Thursday, November 8, 12

Consistency is a predicate C on entities and

their values. The predicate is generally not

known to the system but is embodied in the

structure of the transactions.

From "Transactions and Consistency in Distributed
Database Systems",
I.L. Traiger, J.N. Gray, C.A. Galtieri, and B.G. Lindsay, 1982

Thursday, November 8, 12

Can this kind of consistency
be maintained in a
distributed system?

Thursday, November 8, 12

V = v0

time

G1

G2
read V
 ←v0

read X
←x1

X = x0

write
X, x1

write
V, v1

Thursday, November 8, 12

V = v0

time

G1

G2
read V
 ←v0

read X
←x1

read V
 ←v0

write
V, v1

write
X, x1

read X
←x1

X = x0

write
X, x1

write
V, v1

Thursday, November 8, 12

C
R
D
T

Thursday, November 8, 12

C
R
D
T

Commutative
Replicated
Data
Type

Thursday, November 8, 12

Loophole 4

Thursday, November 8, 12

Partition A: <Ca, Ga, a1, a2, …, an>

Thursday, November 8, 12

Partition A: <Ca, Ga, a1, a2, …, an>

Ca Consistency predicate over a1… an

Ga Subset of nodes in network

ai Value of variable i

Thursday, November 8, 12

Partition A: <Ca, Ga, a1, a2, …, an>

Ca Consistency predicate over a1… an

Ga Subset of nodes in network

ai Value of variable i

Thursday, November 8, 12

Partition A: <Ca, Ga, a1, a2, …, an>

Ca Consistency predicate over a1… an

Ga Subset of nodes in network

ai Value of variable i

Thursday, November 8, 12

Partition A: <Ca, Ga, a1, a2, …, an>

Ca Consistency predicate over a1… an

Ga Subset of nodes in network

ai Value of variable i

Thursday, November 8, 12

Partition A: <Ca, Ga, a1, a2, …, an>

Thursday, November 8, 12

Partition A: <Ca, Ga, a1, a2, …, an>

Thursday, November 8, 12

Partition A: <Ca, Ga, a1, a2, …, an>

Partition B: <Cb, Gb, b1, b2, …, bm>

Thursday, November 8, 12

Ga Gb

WAN

LOHRs LOHRs

Thursday, November 8, 12

Loophole 5

Thursday, November 8, 12

Bounded Consistency

Thursday, November 8, 12

Thursday, November 8, 12

Core
Thursday, November 8, 12

Core Nebula
Thursday, November 8, 12

Thursday, November 8, 12

RDBMS
Thursday, November 8, 12

RDBMS

Memcached

Thursday, November 8, 12

Thursday, November 8, 12

Item Display
A & P

Heavy caching

Bid History
C & P

Strong consistency

Thursday, November 8, 12

Loophole 6

Thursday, November 8, 12

Stop building
distributed systems

Thursday, November 8, 12

Loophole 7

Thursday, November 8, 12

Get a better network!

Thursday, November 8, 12

Asynchronous message passing

Thursday, November 8, 12

Asynchronous message passing

That’s UDP!

Thursday, November 8, 12

Semi-synchronous network

Lost messages are detected after time t
(by a missed acknowledgement)

Thursday, November 8, 12

“Delayed-t Consistency”

A partial ordering P orders all writes, and all reads
with respect to writes.

The value of every read is the one written by the
previous write, where “previous” is under P.

The order in P is consistent with the order of read
and write requests at each node.

If all messages are delivered and an operation θ
completes before Φ begins, then Φ does not
precede θ in P.

Assume an interval greater than t in which no
messages are lost. Further assume that θ begins
before the interval and Φ begins after the interval
ends. Then Φ does not precede θ in P.

Thursday, November 8, 12

A partial ordering P orders all writes, and all reads
with respect to writes.

The value of every read is the one written by the
previous write, where “previous” is under P.

The order in P is consistent with the order of read
and write requests at each node.

If all messages are delivered and an operation θ
completes before Φ begins, then Φ does not
precede θ in P.

Assume an interval greater than t in which no
messages are lost. Further assume that θ begins
before the interval and Φ begins after the interval
ends. Then Φ does not precede θ in P.

Thursday, November 8, 12

“Delayed-t Consistency”

Thursday, November 8, 12

“Eventual Consistency”

Thursday, November 8, 12

Loophole 7

Thursday, November 8, 12

Loophole 7×

Thursday, November 8, 12

Loophole 8

Thursday, November 8, 12

Loophole 8
Use the Force

Thursday, November 8, 12

Relativistic Quantum Field Theory

Thursday, November 8, 12

Thursday, November 8, 12

Thursday, November 8, 12

Thursday, November 8, 12

Thursday, November 8, 12

GPS

Thursday, November 8, 12

Loophole 9

Thursday, November 8, 12

Redefine availability

Thursday, November 8, 12

Normal
Operation

Partition
Detected

Query

Alter

Available Available

Available Not
available

Thursday, November 8, 12

ASYMMETRY OF TIME

Send
Request

Thursday, November 8, 12

Send
Request

100 ms 200 ms

ASYMMETRY OF TIME

Thursday, November 8, 12

Send
Request

100 ms 200 ms 300 ms 400 ms 500 ms 600 ms

ASYMMETRY OF TIME

Thursday, November 8, 12

Send
Request

100 ms 200 ms 300 ms 400 ms 500 ms 600 ms Time
Out

ASYMMETRY OF TIME

Thursday, November 8, 12

9000 100 200 300 400 500 600 700 800

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time Elapsed (ms)

C
on

fid
en

ce
 o

f R
es

po
ns

e
be

fo
re

 T
im

eo
ut

Thursday, November 8, 12

Send
Request

100 ms 200 ms 300 ms 400 ms 500 ms 600 ms Time
Out

Response
Arrives

ASYMMETRY OF TIME

Thursday, November 8, 12

To the observer, there is no
difference between “too
slow” and “not there”.

Thursday, November 8, 12

P A C E L C

Thursday, November 8, 12

P

A

C

E

L

C

Thursday, November 8, 12

Partition?

L

C

A

C

Thursday, November 8, 12

Partition?

L

C

Yes

A

C

Thursday, November 8, 12

Partition?

Availability

Consistency

L

C

Yes

vs

A

C

Thursday, November 8, 12

Partition?

Availability

Consistency

Yes No

vs

L

C

Thursday, November 8, 12

Partition?

Availability

Consistency

Latency

Consistency

Yes No

vs vs

L

C

Thursday, November 8, 12

Loophole 10

Thursday, November 8, 12

OBSERVABLE CONSISTENCY

Thursday, November 8, 12

Porky Pig’s Window Shade

If Porky Pig is looking at the window
shade, it will be down.

If he is looking away from the window
shade, it will be up.

Thursday, November 8, 12

FIRST DIMENSION

X1 = {looking, not looking}

Thursday, November 8, 12

SECOND DIMENSION

X1 = {looking, not looking}

X2 = {shade open, shade closed}

Thursday, November 8, 12

FORBIDDEN STATES

X1 = {looking, not looking}

X2 = {shade open, shade closed}

Thursday, November 8, 12

Back to “consistency” as a
predicate over the state space

Thursday, November 8, 12

time
t11 t12

Thursday, November 8, 12

Back to CAP

Thursday, November 8, 12

None of these make
CAP “untrue”

Thursday, November 8, 12

None of these make
CAP “untrue”

Some of them operate under
different assumptions.

Thursday, November 8, 12

Some of them are totally
impractical.

Thursday, November 8, 12

Some of them are totally
impractical.

Some of them are in
production today.

Thursday, November 8, 12

Finally, I’ll close with this bit of
code:

Thursday, November 8, 12

Finally, I’ll close with this bit of
code:

QHH9Q+++

Thursday, November 8, 12

mtnygard@thinkrelevance.com

@mtnygard

Michael T. Nygard
Relevance, Inc.

Thursday, November 8, 12

mailto:mtnygard@thinkrelevance.com
mailto:mtnygard@thinkrelevance.com

