
Dropwizard
Make features not WAR

Thursday, November 8, 12



Ryan Kennedy
Infrastructure Engineering at Yammer

@rckenned

Thursday, November 8, 12



The road to the 
renaissance

Thursday, November 8, 12

We’ll be taking the long road to the Java renaissance by way of Service Oriented Architectures. 
So bear with me for a few slides.



Inevitably every major 
service decomposes

Thursday, November 8, 12

I’m going to lead into this talk with a discussion around service decomposition. Yammer, 
Twitter, Netflix. These are all major online services which have, over time, decomposed 
themselves from monolithic systems to Service Oriented Architectures. For the most part, 
they’ve done this because…



Monoliths don’t scale 
technically or 

organizationally

Thursday, November 8, 12

It’s an inevitability of every major online service to decompose because monoliths don’t 
scale. Technically they are a burden as you increase traffic and try to figure out how to scale 
individual pieces of your monolith. Organizationally you suffer from too many cooks in the 
kitchen.



Inevitably you turn to 
Service Oriented 

Architectures

Thursday, November 8, 12

You begin breaking the monolith apart into components that scale individually. You begin 
breaking the monolith apart into codebases that scale organizationally. The way many 
successful companies do this is by decomposing the monolith into a series of separate 
services.



Why? 

Thursday, November 8, 12

Why is it that a service oriented architecture scales technically and organizationally? There’s a 
few reasons.



Loose Coupling

Thursday, November 8, 12

Service oriented architectures allow your system to be loosely coupled. Codebases become 
smaller and more focused in their concerns. Compared to the monolith which is larger and 
broader in its concerns. Integrations are done at the API level rather than the code level. You 
can push updates to the internals of a service without telling anyone. You can upgrade 
libraries without telling anyone.



Distributed Execution

Thursday, November 8, 12

Loose coupling allows you to have distributed execution. This means teams can work 
independently, coordinating just long enough to agree on the communication between 
components. Lower coordination costs lead to more productive teams. Yammer has been 
successful in large part due to eliminating coordination costs, both at the technical level and 
the organizational level.



Reusability

Thursday, November 8, 12

If you keep the services general enough, they can be reused. For example, at Yammer we 
have an image resizing service that we built to be able to dynamically scale user and group 
avatar images. When it came time to add a new feature allowing users to see an inline 
preview of large image attachments, we were able to reuse that service for free.



Independent 
provisioning

Thursday, November 8, 12

Since your application is broken into distinct services, you can scale by adding resources 
where they are needed. At Yammer we have one service that does search indexing and 
another that performs user queries. We can scale our indexing horsepower independently of 
our query horsepower, which is good because we index on every change but users search 
relatively infrequently. If that changed, we could scale queries up independently of scaling 
indexing.



However…
Service Oriented 

Architectures bring 
transaction costs

Thursday, November 8, 12

SOA is nice, but it does come at a cost. If it was pure profit everyone would do it all the time. 
What are some of those costs?



Provisioning

Thursday, November 8, 12

In the monolithic world you add a feature and re-deploy your application. In an SOA world 
you’re adding more machines much more frequently. Every time you add a new service you 
need to find hardware to run it on. That may involve buying and racking hardware. You have 
to install and configuring an OS.



Deployment

Thursday, November 8, 12

Once you have hardware and an OS, you have to get your application on to it. In a monolithic 
world you have your deploy script. Sometimes you add or remove hosts from that script. In a 
SOA world you add a whole new service. That needs different software and configurations 
installed onto a different set of machines.



Monitoring and Logging

Thursday, November 8, 12

Once you’ve deployed your software, you have to monitor it. You need to collect logs from it. 
Every time you add a service that’s another set of metrics to collect. Another set of logs to 
rotate and archive.



Alerting

Thursday, November 8, 12

Most importantly, you have to know when your software isn’t working so you need alerting of 
some sort. Each service added brings a new set of things to alert on. This service is a 
clustered key-value store with single master replication so you want to know when writes are 
failing because you can’t elect a new master node.



How do we get there?

Thursday, November 8, 12

So how do we mere mortals get from our easy monolithic world to the SOA world where we 
can take advantage of all of the benefits of SOA while not being killed by the transactional 
costs?



There are a lot of hot 
technologies these days

Thursday, November 8, 12

There are a lot of hot technologies these days for building services. The Ruby camp loves 
Rails and Sinatra. Python has Django and Pylons. And we can’t forget the loudest camp of all 
these days…nodejs.



Java is generally not hot 
these days

Thursday, November 8, 12

Thanks to verbose APIs like servlets. Thanks to the EJB boogeyman. Thanks to dealing with 
countless security issues in Tomcat. I can walk into any coffee shop in SF these days and find 
someone looking for a Rails/Python/nodejs job. Finding someone looking for Java work in 
this part of town is not as easy.



But we can change that

Thursday, November 8, 12

I wouldn’t be here in the Java Renaissance track raising the issue if I wasn’t also here with a 
solution. There’s nothing inherently wrong with Java or the base tools it provides. We just 
need to bring some up-to-date tools to the table and assemble them in a way that makes 
building services easier and more effective.



Yammer deals with the 
transaction costs 

through dropwizard

Thursday, November 8, 12

I joined Yammer 2 years ago. At the time we were a Rails monolith and a JVM service for 
doing browser push notifications. Today we’re a Rails monolith and close to 20 JVM services, 
thanks in large part to Dropwizard.



What is dropwizard?

Thursday, November 8, 12

So what is this magical concoction that works so well for Yammer? What’s in this mystical 
snake oil that I’m trying to sell to all of you?



Production ready 
services

Thursday, November 8, 12

Most importantly, Dropwizard is a framework for producing production ready services. At the 
end of the day, features in production are the thing that produces value for the company. So 
it’s vital that Dropwizard make this happen.



HTTP and friends

Thursday, November 8, 12

In particular, we leverage HTTP to the fullest. We build RESTful JSON services. This provides 
us with a very loose coupling. If you want to talk to a service, whip out an HTTP library. If 
your language doesn’t have an HTTP library, it’s probably a good idea to rethink your choice 
of language. HTTP is also well supported as infrastructure. You’re not going to have a hard 
time finding a caching load balancer, for instance.



Java

Thursday, November 8, 12

I’m probably/maybe preaching to most of the choir in this room, but Java is a good thing. 
The JVM is fast, which is always nice. The language is capable with more than 40k libraries in 
Maven Central, some of which are bound to be usable. And it’s incredibly transparent. You 
can answer a tremendous number of questions regarding what it’s doing internally through 
the available tools. The same can not be said of much of the competition.



Saves us time
Batteries INCLUDED

Thursday, November 8, 12

Dropwizard includes everything you need to ship to production. Configuration, logging, 
metrics, health checks, sane HTTP clients with connection pool management, authentication, 
views and more. This means you save time. You’ll spend more time shipping to production 
than you will figuring out how to fulfill some obligation you have to ship to production 
because DW takes care of most/all of the obligations.



We did this so we (and 
you) don’t have to

Thursday, November 8, 12

Ultimately, we did this so we (and now you, since we open sourced it) wouldn’t have to do it 
again. A capable engineer with some dropwizard experience can have a production ready 
Hello, World in 15 minutes. For dropwizard-ready organizations where you already have a 
deployer in place, you can have that same application in production in another minute.



How do I dropwizard?

Thursday, November 8, 12

So by now you’re all wondering if I have a Square reader with me, ready to take your money. 
First, this stuff is free so put your cards away. There is a tip jar in my bag, however. Now that 
we’re past cost, let’s talk about the mechanics of a dropwizard application so you can see 
just how easy this is.



Hello, World!
in dropwizard 0.6.0-SNAPSHOT

Thursday, November 8, 12

This is a Hello, World application built on the current mainline of development, 0.6.0-
SNAPSHOT. This application is actually included in the dropwizard github repository if you 
want to check it out later.



Thursday, November 8, 12

First you’ll want a Maven POM file. Yeah, I said it. Maven. Deal with it. Presenters don’t let 
attendees use Ant. Dropwizard distributes via a Maven repository. It will also get you up and 
running in minutes if you use a good Maven-aware IDE. We big believers in IntelliJ IDEA. Also, 
you’re going to want to use the Maven shade plugin for reasons I’ll discuss shortly.



Thursday, November 8, 12

You’re going to want a YAML configuration file for your service (JSON is also an option, same 
structure, different syntax). Dropwizard provides standard configurations for HTTP servers 
and application logging. In addition, you can add your own configurations. In this case, we 
see the greeting template and a default name configured in our YAML file. The application 
responds on port 8080. Metrics responds on port 8081.



Thursday, November 8, 12

You’re going to need a configuration class. The YAML file will get mapped to your class. It 
should extend the dropwizard Configuration base class, which specifies things like the HTTP 
server and logging settings. In addition, you get some nice validations for your configuration 
properties. Unlike most application servers, dropwizard will refuse to start if your 
configuration doesn’t validate.



Thursday, November 8, 12

Dropwizard runs just like any other Java application, out of main(). Build your dependencies 
by hand and then hand them to your resource class constructor. Then hand your resource to 
the dropwizard environment. We’ve dropped any use of fancy dependency injection 
frameworks. This is nice because it works nicely in any IDE without any special application 
server support. Just run the main() in a debugger.



Thursday, November 8, 12

Dropwizard uses JAX-RS (Jersey) under the hood, so you can accept/return Java objects and 
they’ll be handled by a provider. Dropwizard bundles Jackson to process JSON, so use Jackson 
annotations to describe how to serialize/deserialize the object. You can also use hibernate 
validator annotations (@Length above) to validate inbound objects. If you don’t know JAX-RS, 
read the JSR sometime. It’s a really nice API and JSR 311 is actually readable.



Thursday, November 8, 12

Then you’ll want a resource class to model the REST resource. JAX-RS rules apply again here, 
so use @Path and @GET/@PUT/@POST/@DELETE annotations. Dropwizard supports @Timed 
annotations to tie back into the Metrics library. In this case, @Timed resource methods get 
their own timer in the metrics registry showing you how often the method is called (m1/m5/
m15 rates) and how long it takes to process requests (p50/p75/p95/p99/p999).



Thursday, November 8, 12

Add a healthcheck because, you know, it’s nice when your early warning systems tell you 
things are broken instead of your users telling you via your customer support team.



SHIP IT

Thursday, November 8, 12

That’s all…seriously. Seven files…maybe 200 lines of stuff. And you’re ready for production. 
You all used Maven to build your stuff and you set your build up to use the Maven shade 
plugin, which means your entire application was built as a single JAR file. So ship that and 
your configuration YAML file to your production host, restart the JVM process and call it a 
day. You’re live.



Optimized for Mean 
Time To Production

Thursday, November 8, 12

Everything in dropwizard is optimized for mean time to production because, ultimately, code 
in production is what matters. That’s how you make money. You don’t make any money while 
you’re figuring out how to set up request logging, how to wire jersey into jetty, how to wire 
jackson into jersey. In addition, because you ship faster you get information faster. Faster 
information now means shipping better in the future.



Some dropwizard 
words of wisdom

Thursday, November 8, 12

We didn’t magically wake up one morning and envision this dropwizard thing and how we’d 
use it. It came from months of living without dropwizard and months more of living with 
earlier dropwizards. We’ve iterated on some principles that have worked pretty well for us, so 
let me share some of these with you today.



Extract, don’t preempt

Thursday, November 8, 12

We didn’t build dropwizard from the start. We built three services using similar (but not 
identical) principles and then extracted the good parts of each into what became dropwizard 
0.0.1. Ultimately, your code needs to advance the business. Make sure you’re doing that first.



Invent as little as 
possible

Thursday, November 8, 12

Most companies don’t have extensive R&D budgets. Before you go off building your own ORM 
to support your home grown dependency injection system, look for good off the shelf 
solutions. In the end, dropwizard is a bunch of glue binding solid, useful libraries into a 
thoughtful pattern. There’s nothing particularly novel about dropwizard and yet it’s incredibly 
powerful as a productivity tool for us.



Focus on the business

Thursday, November 8, 12

Value shipping over elegance.



Downloads and further 
information

Thursday, November 8, 12

Where can you get dropwizard and information about dropwizard?



http://search.maven.org/

com.yammer.dropwizard:
dropwizard-core

Thursday, November 8, 12

Builds of dropwizard are available on Maven central. This includes snapshot and release 
versions.

http://search.maven.org/
http://search.maven.org/


https://github.com/codahale/
dropwizard

Thursday, November 8, 12

Dropwizard is hosted on github in Coda’s personal repository. You’ll find the example 
application and a number of bundles for extending dropwizard in the repository.

https://github.com/codahale/dropwizard
https://github.com/codahale/dropwizard
https://github.com/codahale/dropwizard
https://github.com/codahale/dropwizard


dropwizard-user forum 
on Google Groups

Thursday, November 8, 12

There’s a dropwizard-user mailing list on Google Groups. This is a good place to drop in and 
ask questions about using, extending or modifying dropwizard.



http://dropwizard.codahale.com/

Thursday, November 8, 12

Some really nice documentation is also available online, including a pretty nice getting 
started guide.

http://dropwizard.codahale.com/
http://dropwizard.codahale.com/


Questions?

Thursday, November 8, 12


