
©2014 Azul Systems, Inc.	 	 	 	 	 	

Closing the [last?] inherent C
vs. Java speed gap

Gil Tene, CTO & co-Founder, Azul Systems

http://www.objectlayout.org

Faster Object Arrays

http://objectlayout.org

©2014 Azul Systems, Inc.	 	 	 	 	 	

org.ObjectLayout
Focus: Match the raw speed benefits C based
languages get from commonly used forms of memory
layout

Expose these benefits to normal idiomatic POJO use

Focus: Speed. For regular Java Objects. On the heap.

Not looking for:

Improved footprint

off-heap solutions

immutability

These are all

orthogonal
concerns}

http://ObjectLayout.org

©2014 Azul Systems, Inc.	 	 	 	 	 	

org.ObjectLayout: goal overlap?

Value types? Packed Objects?

Relationship to Value types: none

Relationship to Packet Objects (or JNR/FFI): none

Laser-focused on a different problem

Does not conflict or contradict concerns that drive
these other efforts

Minimal overlap does exist

… The kind of overlap that ArrayList and HashMap
have as good alternatives of a bag of objects

Value
types

Packed
objects

&

JNR/FFI

ObjectLayout

precise layout
control

Speed!
For any Object

On Heap

Off Heap

Sharing data

Immutable

On-stack

Return values

Objects
usable by
all existing

code
New code

On Heap

Array of
small-footprint

values

New code

©2014 Azul Systems, Inc.	 	 	 	 	 	

org.ObjectLayout Origin
ObjectLayout/StructuredArray started with a simple
argument. The common sides of the argument are:

“We need structs in Java…”: Look at all the unsafe
direct access stuff we do using flyweights over buffers
or byte arrays, just to squeeze out speed that C gets
trivially…

“We already have structs. They are called Objects.”:
What we need is competitively speedy access for the
data collection semantics that are currently faster in C

It’s all about capturing “enabling semantic limitations”

©2014 Azul Systems, Inc.	 	 	 	 	 	

speed comes from ???

C’s layout speed benefits are dominated by two factors:

Dead reckoning:

Data address derived from containing object address

no data-dependent load operation

Streaming (e.g. in the case of an array of structs):

sequential access through multiple members

predictable striding access in memory

prefetch logic compensates for miss latency

©2014 Azul Systems, Inc.	 	 	 	 	 	

example of speed-enabling limitations

Why is Object[] inherently slower than struct foo[]?

Java: a mutable array of same-base-type objects

C: An immutable array of exact-same-type structures

Mutability (of the array) & non-uniform member size
both (individually) force de-reference & break streaming

StructuredArray<T>: An immutable array of [potentially]
mutable exact-same-type (T) objects

Supports Instantiation, get(), but not put()…

©2014 Azul Systems, Inc.	 	 	 	 	 	

org.ObjectLayout target forms

The common C-style constructs we seek to match:

array of structs

 struct foo[];

struct with struct inside

 struct foo { int a; struct bar b; int c; };

struct with array at the end

 struct packet { int length; char[] body; }

None are currently (speed) matched in Java

©2014 Azul Systems, Inc.	 	 	 	 	 	

org.ObjectLayout: starting point
Capture the semantics that enable speed in the various
C-like data layout forms behaviors

Theory: we can do this all with no language change…

Capture the needed semantics in “vanilla” Java classes
(targeting e.g. Java SE 6)

Have JDKs recognize and intrinsify behavior, optimizing
memory layout and access operations

“Vanilla” and “Intrinsified” implementation behavior
should be indistinguishable (except for speed)

©2014 Azul Systems, Inc.	 	 	 	 	 	

Modeled after java.util.concurrent

Captured semantics enabled fast concurrent operations

No language changes. No required JVM changes.

Implementable in “vanilla” Java classes outside of JDK

e.g. AtomicLong CAS could be done with synchronized

JDKs improved to recognize and intrinsify behavior

e.g. AtomicLong CAS is a single x86 instruction

Moved into JDK and Java name space in order to secure
intrinsification and gain legitimate access to unsafe

©2014 Azul Systems, Inc.	 	 	 	 	 	

org.ObjectLayout.StructuredArray

array of structs

 struct foo[];

struct with struct inside

 struct foo { int a; struct bar b; int c; };

struct with array at the end

 struct packet { int len; char[] body; }

©2014 Azul Systems, Inc.	 	 	 	 	 	

StructuredArray<T>
A collection of object instances of arbitrary type T

Arranged as array: T element = get(index);

Collection is immutable: cannot replace elements

Instantiated via factory method:

 a = StructuredArray.newInstance(SomeClass.class, 100);

All elements constructed at instantiation time

Supports arbitrary constructor and args for members

Including support for index-specific CtorAndArgs

©2014 Azul Systems, Inc.	 	 	 	 	 	

StructuredArray<T> liveness
We considered an “inner pointer keeps container alive”
approach, because that what other runtimes seem to do
with arrays of structs and field references

But then we realized: real objects have real liveness

A StructuredArray is just a regular idiomatic collection

The collection keeps it’s members alive

Collection members don’t (implicitly) keep it alive

*** Under the hood, optimized implementations will want
to keep the collection “together” as long as it is alive

©2014 Azul Systems, Inc.	 	 	 	 	 	

Benefits of liveness approach
StructuredArray is just a collection of objects

No special behavior: acts like any other collection

Happens to be fast on JDKs that optimize it

Elements of a StructuredArray are regular objects

Can participate in other collections and object graphs

Can be locked

Can have an identity hashcode

Can be passed along to any existing java code

It’s “natural”, and it’s easier to support in the JVM

©2014 Azul Systems, Inc.	 	 	 	 	 	

StructuredArray<T> continued…
Indexes are longs (it’s 2014…)

Nested arrays are supported (multi-dim, composable)

Non-leaf Elements are themselves StructuredArrays

StructuredArray is subclassable

Supports some useful coding styles and optimizations

StructuredArray is not constructable

must be created with factory methods

 (*** Did you spot that small contradiction?)

©2014 Azul Systems, Inc.	 	 	 	 	 	

Optimized JDK implementation
A new heap concept: “contained” and “container” objects

Contained and container objects are regular objects

Given a contained object, there is a means of finding
the immediately containing object

If GC needs to move an object that is contained in a
live container object, it will move the entire container

Very simple to implement in all current OpenJDK GC
mechanisms (and in Zing’s C4, and in others, we think)

More details on github & in project discussion

©2014 Azul Systems, Inc.	 	 	 	 	 	

Optimized JDK implementation

Streaming benefits come directly from layout

No compiler optimizations needed

Dead-reckoning benefits require some compiler support

no dereferencing, but….

e = (T) (a + a.bodySize + (index * a.elementSize));

elementSize and bodySize are not constant

But optimizations similar to CHA & inline-cache apply

More details in project discussion…

©2014 Azul Systems, Inc.	 	 	 	 	 	

ObjectLayout forms 2 & 3

array of structs

 struct foo[];

struct with struct inside

 struct foo { int a; struct bar b; int c; };

struct with array at the end

 struct packet { int len; char[] body; }

©2014 Azul Systems, Inc.	 	 	 	 	 	

“struct in struct”:

intrinsic objects

Object instance x is intrinsic to object instance y:

 Class Line {

@Intrinsic

 private final Point endPoint1 =

IntrinsicObjects.constructWithin(“endpoint1”, this);

 …

 }

Intrinsic objects can be laid out within containing object

Must deal with & survive reflection based overwrites

©2014 Azul Systems, Inc.	 	 	 	 	 	

“struct with array at the end”:

subclassable arrays

Semantics well captured by subclassable arrays classes

ObjectLayout describes one for each primitive type. E.g.
PrimitiveLongArray, PrimitiveDoubleArray, etc…

Also ReferenceArray<T>

StructuredArray<T> is also subclassable, and captures
“struct with array of structs at the end”

©2014 Azul Systems, Inc.	 	 	 	 	 	

The org.ObjectLayout forms:

StructuredArray<T> facilitates:

“struct foo[];"

@Intrinsic of member objects facilitates:

“struct foo { int a; struct bar b; int c; };”

PrimitiveLongArray, .. , ReferenceArray facilitate:

“struct packet { int len; char[] body; }”

©2014 Azul Systems, Inc.	 	 	 	 	 	

The three forms are composable

 public class Octagons extends StructuredArray<Octagon> …

 public class Octagon {

 @Intrinsic(length = 8)

 private final StructuredArrayOfPoint points =

 IntrinsicObjects.constructWithin(“points”, this);

 …

 }

 public class StructuredArrayOfPoint extends StructuredArray<Point>…

©2014 Azul Systems, Inc.	 	 	 	 	 	

Status

Vanilla Java code on github. Public domain under CC0.
See http://www.objectlayout.org

Fairly mature semantically. Working out “spelling”

Intrinsified implementations coming over the next few
months for both Zing and OpenJDK

Next steps: OpenJDK project with working code, JEP…

Aim: Add ObjectLayout to Java SE (9?)

Vanilla implementation will work on all JDKs

http://www.objectlayout.org

©2014 Azul Systems, Inc.	 	 	 	 	 	

ObjectLayout Summary
New Java classes: org.ObjectLayout.*

Propose to move into java namespace in Java SE (9?)

Work “out of the box” on Java 6, 7, 8, 9, …

No syntax changes, No new bytecodes

No new required JVM behavior

Can “go fast” on JDKs that optimize for them

Relatively simple, isolated JVM changes needed

Proposing to include “go fast” in OpenJDK (9?)

Zing will support “go fast” for Java 6, 7, 8, 9, …

Q & A
@giltene

http://www.azulsystems.com

http://objectlayout.org

https://github.com/ObjectLayout/ObjectLayout

http://www.azylsystems.com
http://objectlayout.org
https://github.com/ObjectLayout/ObjectLayout

