Faster Object Arrays

Closing the [last?] inherent C
vs. Java speed gap

http://www.objectlayout.org

Gil Tene, CTO & co-Founder, Azul Systems

SYSTEMS®

http://objectlayout.org

org.ObjectLayout

@ Focus: Match the raw speed benefits C based
languages get from commonly used forms of memory
layout

@ Expose these benefits to normal idiomatic POJO use

@ Focus: Speed. For regular Java Objects. On the heap.

@ Not looking for:

@ Improved footprint These are all
@ off-heap solutions orthogonal
concerns

@ immutability

YA

http://ObjectLayout.org

org.ObjectLayout: goal overlap?
Value types? Packed Objects?

@ Relationship to Value types: none
@ Relationship to Packet Objects (or INR/FFI): none
@ Laser-focused on a different problem

® Does not conflict or contradict concerns that drive
these other efforts

@ Minimal overlap does exist

@ ... The kind of overlap that ArrayList and HashMap
have as good alternatives of a bag of objects

YA

Return values
On-stack

On Heap

New code

Array of
small-footprint
values

New code

Immutable

Objects

~usable by
all existing
~ code

e
LR

org.ObjectLayout Origin

@ ObjectLayout/StructuredArray started with a simple
argument. The common sides of the argument are:

® "We need structs in Java...”: Look at all the unsafe
direct access stuff we do using flyweights over buffers
or byte arrays, just to squeeze out speed that C gets
trivially...

@ "We already have structs. They are called Objects.”
What we need is competitively speedy access for the
data collection semantics that are currently faster in C

@ Its all about capturing “enabling semantic limitations”

YA

speed comes from ??7?

@ Cs layout speed benefits are dominated by two factors:

@ Dead reckoning:
@ Data address derived from containing object address

@ no data-dependent load operation

@ Streaming (e.g. in the case of an array of structs):
@ sequential access through multiple members
@ predictable striding access in memory

@ prefetch logic compensates for miss latency

YA

example of speed-enabling limitations

@ Why is Object[] inherently slower than struct fool]?

@ Java: a mutable array of same-base-type objects

@ C: An immutable array of exact-same-type structures

@ Mutability (of the array) & non-uniform member size
both (individually) force de-reference & break streaming

@ StructuredArray<T>: An immutable array of [potentially]
mutable exact-same-type (T) objects

@ Supports Instantiation, get(), but not put()...

YA

org.ObjectLayout target forms

® The common C-style constructs we seek to match:

@ array of structs
struct fooll;

@ struct with struct inside
struct foo { int a; struct bar b; int c; };

@ struct with array at the end
struct packet { int length; char[] body; }

@ None are currently (speed) matched in Java

YA

org.ObjectLayout: starting point

@ Capture the semantics that enable speed in the various
C-like data layout forms behaviors

@ Theory: we can do this all with no language change...

@ Capture the needed semantics in “vanilla” Java classes
(targeting e.g. Java SE 6)

@ Have JDKs recognize and intrinsify behavior, optimizing
memory layout and access operations

@ "Vanilla” and "Intrinsified” implementation behavior
should be indistinguishable (except for speed)

YA

Modeled after java.util.concurrent

@ Captured semantics enabled fast concurrent operations
@ No language changes. No required JVM changes.

@ Implementable in “vanilla” Java classes outside of JDK

@ e.g. AtomicLong CAS could be done with synchronized

@ JDKs improved to recognize and intrinsify behavior

@ e.g. AtomicLong CAS is a single x86 instruction

@ Moved into JDK and Java name space in order to secure
intrinsification and gain legitimate access to unsafe

YA

org.ObjectLayout.StructuredArray

@ array of structs
struct fool];

@ struct with struct inside
struct foo { int a; struct bar b; int c; };

@ struct with array at the end
struct packet { int len; char[] body; }

YA

StructuredArray<T>

@ A collection of object instances of arbitrary type T
@ Arranged as array: T element = get(index);
@ Collection is immutable: cannot replace elements

@ Instantiated via factory method:

a = StructuredArray.newInstance(SomecClass.class, 100);
@ All elements constructed at instantiation time

@ Supports arbitrary constructor and args for members

@ Including support for index-specific CtorAndArgs

YA

StructuredArray<T> liveness

@ We considered an “inner pointer keeps container alive”
approach, because that what other runtimes seem to do
with arrays of structs and field references

® But then we realized: real objects have real liveness

® A StructuredArray is just a regular idiomatic collection
@ The collection keeps its members alive

@ Collection members dont (implicitly) keep it alive

*** Under the hood, optimized implementations will want
to keep the collection “together” as long as it is alive

YA

Benefits of liveness approach

@ StructuredArray is just a collection of objects
@ No special behavior: acts like any other collection

@ Happens to be fast on JDKs that optimize it

@ Elements of a StructuredArray are regular objects
@ Can participate in other collections and object graphs
@ Can be locked
@ Can have an identity hashcode

@ Can be passed along to any existing java code

@ Its “natural”, and its easier to support in the JVM

YA

StructuredArray<T> continued...

@ Indexes are longs (its 2014...)

® Nested arrays are supported (multi-dim, composable)

@ Non-leaf Elements are themselves StructuredArrays

® StructuredArray is subclassable

@ Supports some useful coding styles and optimizations

@ StructuredArray is not constructable

@ must be created with factory methods

(*** Did you spot that small contradiction?)

YA

Optimized JDK implementation

@ A new heap concept: “contained” and “container” objects
@ Contained and container objects are regular objects

@ Given a contained object, there is a means of finding
the immediately containing object

@ If GC needs to move an object that is contained in a
live container object, it will move the entire container

@ Very simple to implement in all current OpenJDK GC
mechanisms (and in Zings C4, and in others, we think)

@ More details on github & in project discussion

YA

Optimized JDK implementation

@ Streaming benefits come directly from layout

@ No compiler optimizations needed

@ Dead-reckoning benefits require some compiler support
@ no dereferencing, but....
@e=(T)(a+ a.bodySize + (index * a.elementSize));
@ elementSize and bodySize are not constant
@ But optimizations similar to CHA & inline-cache apply

@ More details in project discussion...

YA

ObjectLayout forms 2 & 3

@ array of structs
struct fooll;

@ struct with struct inside
struct foo { int a; struct bar b; int c; };

@ struct with array at the end
struct packet { int len; char[] body; }

YA

“struct in struct”:
intrinsic objects

® Object instance x is intrinsic to object instance v:

Class Line §
@Intrinsic
private final Point endPointl =
IntrinsicObjects.constructWithin(“endpointl”, this);

;

@ Intrinsic objects can be laid out within containing object
® Must deal with & survive reflection based overwrites

YA

"struct with array at the end”:
subclassable arrays

@ Semantics well captured by subclassable arrays classes

® ObjectLayout describes one for each primitive type. E.g.
PrimitiveLongArray, PrimitiveDoubleArray, etc...

@ Also ReferenceArray<T>

@ StructuredArray<T> is also subclassable, and captures
"struct with array of structs at the end”

YA

The org.ObjectLayout forms:

@ StructuredArray<T> facilitates:

“struct fool];"

® @Intrinsic of member objects facilitates:

“struct foo { int a; struct bar b; int c; };”

@ PrimitiveLongArray, .. , ReferenceArray facilitate:

“struct packet { int len; char[] body; }”

YA

The three forms are composable

public class Octagons extends StructuredArray<Octagon> ...
public class Octagon {
@Intrinsic(length = 8)

private final StructuredArrayOfPoint points =
IntrinsicObjects.constructWithin("points”, this);

public class StructuredArrayOfPoint extends StructuredArray<Point>...

YA

Status

@ Vanilla Java code on github. Public domain under CCO.
See http://www.objectlayout.org

@ Fairly mature semantically. Working out “spelling”

@ Intrinsified implementations coming over the next few
months for both Zing and OpenJDK

@ Next steps: OpenJDK project with working code, JEP...

@ Aim: Add ObjectLayout to Java SE (97?)
@ Vanilla implementation will work on all JDKs

YA

http://www.objectlayout.org

ObjectLayout Summary

@ New Java classes: org.ObjectLayout.”

@ Propose to move into java namespace in Java SE (9?)

@ Work “out of the box” on Java 6, 7, 8, 9, ..
@ No syntax changes, No new bytecodes

@ No new required JVM behavior

@ Can “go fast” on JDKs that optimize for them
@ Relatively simple, isolated JVM changes needed
@ Proposing to include “go fast” in OpenJDK (9?)
@ Zing will support “go fast” for Java 6, 7, 8, 9, ...

YA

Q&A

@giltene

http://www.azulsystems.com

http://objectlayout.org

https://qgithub.com/ObjectLayout/ObjectLayout

AZUL
SYSTEMS®

http://www.azylsystems.com
http://objectlayout.org
https://github.com/ObjectLayout/ObjectLayout

