
Stalking the Lost Write:
Memory Visibility in

Concurrent Java
Jeff Berkowitz, New Relic 

QCon San Francisco, November 2014

The Computer We Imagine

 CPU

Memory

WriteRead

. . .
statement-1;
statement-2;
if (b) statement-3;
while (cond) {
 statement-4;
}
. . .

The Compiler We Imagine

x++;
!

!

!

!

y++;

mov mem.x, reg1
incr reg1
mov reg1, mem.x
!

!

mov mem.y, reg1
incr reg1
mov reg1, mem.y

Java Assembly Language

Typical assembly language - no particular CPU

The Compiler We Imagine

x++;
!

!

!

!

y++;

mov mem.x, reg1
incr reg1
mov reg1, mem.x
!

!

mov mem.y, reg1
incr reg1
mov reg1, mem.y

Java Assembly Language*

Typical assembly language - no particular CPU

The Compiler We Get

x++;
!

!

!

!

y++;

mov mem.x, reg1
mov mem.y, reg2
!

incr reg1
mov reg1, mem.x
!

incr reg2
mov reg2, mem.y

Java Assembly Language

The Compiler We Get

x++;
!

!

!

!

y++;

mov mem.x, reg1
mov mem.y, reg2
!

incr reg1
mov reg1, mem.x
!

incr reg2
mov reg2, mem.y

Java Assembly Language

The End Result

x++;
!

!

!

!

y++;

mov mem.x, reg1
mov mem.y, reg2
!

incr reg1
mov reg1, mem.x
!

incr reg2
mov reg2, mem.y

Java Assembly Language

rd.issue(x)
rd.issue(y)
!

resp.mov(r1)
resp.mov(r2)
incr r1
wr.async(r1, x)
!

incr r2
wr.async(r2, y)

Hardware Level

Typical micro operations - no particular CPU

The End Result

x++;
!

!

!

!

y++;

mov mem.x, reg1
mov mem.y, reg2
!

incr reg1
mov reg1, mem.x
!

incr reg2
mov reg2, mem.y

Java Assembly Language

rd.issue(x)
rd.issue(y)
!

resp.mov(r1)
resp.mov(r2)
incr r1
wr.async(r1, x)
!

incr r2
wr.async(r2, y)

Hardware Level

Typical micro operations - no particular CPU

The Multiprocessor We Imagine

 CPU

Memory

WriteRead

 CPU

WriteRead

There are no caches or memory buffering here

Code Example 1

void m1() {
 y = a;
 b = 1;
}

void m2() {
 x = b;
 a = 2;
}

CPU 1 CPU 2

Possible outcomes for x and y?

int x, y, a, b; // all zero

Possible Trace 1
Time

Outcome: x == 1, y == 0

y = a

b = 1

m1()

x = b

a = 2

m2()

Possible Trace 2
Time

Outcome: x == 0, y == 0

y = a

b = 1

m1()

x = b

a = 2

m2()

Possible Trace 3
Time

Outcome: x == 0, y == 0

y = a

b = 1

m1()

x = b

a = 2

m2()

Possible Trace 4
Time

Outcome: x == 0, y == 0

y = a

b = 1

m1()

x = b

a = 2

m2()

Possible Trace 5
Time

Outcome: x == 0, y == 2

y = a

b = 1

m1()

x = b

a = 2

m2()

Is That It?
• It looks like x or y must be 0 in the result

• Makes sense: the first statement of m1()
grabs a 0, and so does the first
statement of m2()

• Is our reasoning correct?

void m1() {
 y = a;
 b = 1;
}

void m2() {
 x = b;
 a = 2;
}

int x, y, a, b; // all zero

Surprisingly, No
Counterintuitively, the compiler can reverse the order

void m1() {
 y = a;
 b = 1;
}

mov #1, mem.b
mov mem.a, mem.y

void m2() {
 x = b;
 a = 2;
}

mov #2, mem.a
mov mem.b, mem.x

Intuitive Trace
Time

Outcome: x == 0, y == 0

y = a

b = 1

m1()

x = b

a = 2

m2()

Surprising Trace
Time

Outcome: x == 1, y == 2

y = a

b = 1

m1()

x = b

a = 2

m2()

And It Gets Worse …

Memory

 CPU 2 Store Buffer Cache Invalidate Q

 CPU 1 Store Buffer Cache Invalidate Q

MESI protocol

MESI Protocol

• Widely-known cache coordination protocol

• Acronym for cache line states:

• Modified Exclusive Shared Invalid

• Transfers cache-line “messages” between
processor caches

• Typically coordinated by parallel signaling
“bus” within chip or single board

MESI Example 1-1

Memory

 CPU 2 Store Buffer Cache Invalidate Q

 CPU 1 Store Buffer Cache Invalidate Q

a == 0

Cache line holding
variable a, value 0

 . . .
 a = 7

CPU 2 assigns to a

MESI Example 1-2

Memory

 CPU 2 Store Buffer Cache Invalidate Q

 CPU 1 Store Buffer Cache Invalidate Q

a == 0

“Read/Invalidate”
MESI control message

i

CPU 2 write value to
store buffer

a == 7

 . . . etc . . .

MESI Example 1-3

Memory

 CPU 2 Store Buffer Cache Invalidate Q

 CPU 1 Store Buffer Cache Invalidate Q

 . . . etc . . .

i

a == 0a == 7

MESI Response Data Flow

a == 0

Deferred Invalidate

MESI Example 1-4

Memory

 CPU 2 Store Buffer Cache Invalidate Q

 CPU 1 Store Buffer Cache Invalidate Q

 . . . etc . . .

a == 7

Eventual cache write 
(or not …)

a == 0

Eventual Invalidate 
(or not …)

MESI Example 2-1
Credit: http://bit.ly/pjug2013-mckenney-parallel

void m1() {
 A = 1;
 B = 1;
}

void m2() {
 while (B == 0)
 ;
 assert(A == 1);
}

CPU 1 CPU 2

int A, B; // both zero

http://bit.ly/pjug2013-mckenney-parallel

MESI Example 2-2

Memory

 CPU 2 Store Buffer Cache Invalidate Q

 CPU 1 Store Buffer Cache Invalidate Q

b == 0

a == 0

MESI Example 2-3

Memory

 CPU 2 Store Buffer Cache Invalidate Q

 CPU 1 Store Buffer Cache Invalidate Q

b == 0

a == 0

 . . .
 a = 1

MESI Example 2-4

Memory

 CPU 2 Store Buffer Cache Invalidate Q

 CPU 1 Store Buffer Cache Invalidate Q

b == 0

a == 0

 . . . etc . . .

a == 1
 CPU 1 Store Buffer Cache Invalidate Q

i

a == 1 b == 0

“Read/Invalidate”
MESI control message

MESI Example 2-4

Memory

 CPU 2 Store Buffer Cache Invalidate Q

 CPU 1 Store Buffer Cache Invalidate Q

b == 0

a == 0

 . . . etc . . .

a == 1
 CPU 1 Store Buffer Cache Invalidate Q

i

a == 1 b == 0

MESI read response

a == 0

MESI Example 2-5

Memory

 CPU 2 Store Buffer Cache Invalidate Q

 CPU 1 Store Buffer Cache Invalidate Q

b == 0

a == 0

 . . . etc . . .

a == 1
 CPU 1 Store Buffer Cache Invalidate Q

i

a == 1 b == 0

“Read” message for b in
flight

while (b == 0)
 ;

a == 0

MESI Example 2-6

Memory

 CPU 2 Store Buffer Cache Invalidate Q

 CPU 1 Store Buffer Cache Invalidate Q

b == 0

a == 0

 . . . etc . . .

a == 1
 CPU 1 Store Buffer Cache Invalidate Q

i

 b = 1

a == 1 b == 0

while (b == 0)
 ;

“Read” message for b in
flight

Write new value of b but
store buffer is full

a == 0

MESI Example 2-6

Memory

 CPU 2 Store Buffer Cache Invalidate Q

 CPU 1 Store Buffer Cache Invalidate Q

b == 0

a == 0

 . . . etc . . .

a == 1
 CPU 1 Store Buffer Cache Invalidate Q

i

 b = 1

a == 1 b == 1

while (b == 0)
 ;

“Read” message for b in
flight

Write b to cache
bypassing store buffer

a == 0

MESI Example 2-7

Memory

 CPU 2 Store Buffer Cache Invalidate Q

 CPU 1 Store Buffer Cache Invalidate Q

b == 0

a == 0

 . . . etc . . .

a == 1
 CPU 1 Store Buffer Cache Invalidate Q

i

 . . .

a == 1 b == 1

while (b == 0)
 ;

“Read” message for b
processed

a == 0

MESI Example 2-8

Memory

 CPU 2 Store Buffer Cache Invalidate Q

 CPU 1 Store Buffer Cache Invalidate Q

b == 0

a == 0

 . . . etc . . .

a == 1
 CPU 1 Store Buffer Cache Invalidate Q

i

. . .

a == 1 b == 1

while (b == 0)
 ;

b == 1

“Read” response for
value of b

a == 0

MESI Example 2-9

Memory

 CPU 2 Store Buffer Cache Invalidate Q

 CPU 1 Store Buffer Cache Invalidate Q

b == 0

a == 0

 . . . etc . . .

a == 1
 CPU 1 Store Buffer Cache Invalidate Q

i

. . .

a == 1 b == 1

assert (a == 1)
b == 1

Assertion causes CPU 2
to read value of a

a == 0

MESI Example 2-9

Memory

 CPU 2 Store Buffer Cache Invalidate Q

 CPU 1 Store Buffer Cache Invalidate Q

b == 0

a == 0

 . . . etc . . .

a == 1
 CPU 1 Store Buffer Cache Invalidate Q

i

. . .

a == 1 b == 1

assert (a == 1)
b == 1

a == 0

Cache supplies stale
value of a

MESI Example 2-10

Memory

 CPU 2 Store Buffer Cache Invalidate Q

 CPU 1 Store Buffer Cache Invalidate Q

b == 0

a == 0

 . . . etc . . .

a == 1
 CPU 1 Store Buffer Cache Invalidate Q

i

. . .

a == 1 b == 1

 (assertion fail)
b == 1

Processes invalidate
message, but too lateAssertion fails!

Where Are We?

• Some concurrent traces (“Good” traces) seem
much more intuitive than others

void m1() {
 y = a;
 b = 1;
}

y = a

b = 1

m1()
x = b

a = 2

m2()
“Good” Trace

Others Not So Much

• “Bad” traces don’t correspond to any possible
sequential execution of the original statements

void m1() {
 y = a;
 b = 1;
}

b = 1

y = a

m1()
a = 2

x = b

m2()
“Bad” Trace

Sequential Consistency

• “Good” traces correspond to some sequential
execution of the original language statements

• The concept of some sequential execution
can be formalized as sequential consistency
or SC.

• “Bad” traces can be prevented by specifying
rules allowing programmers to ensure their
code is SC.

Java Memory Model (JMM)
• Early Java was broken

• JMM introduced in Java 1.5 (2004)

• Now section 17.4 and 17.5 of JLS

• Based on the concept of a partial order

• Most memory operations are unordered

• Abstract Happens-before operator defines
ordering of specific memory operations

Typical Rules from JMM

“Every memory operation on a given thread
happens-before the next memory operation
by the same thread in program order.”
!

“All memory operations prior to writing a
volatile variable on one thread happen-before
a read of the same volatile from another
thread.”

Modified Example 1

void m1() {
 y = a;
 b = 1;
}

void m2() {
 x = b;
 a = 2;
}

CPU 1 CPU 2

volatile int a, b, x, y;

y == a must be visible
to any thread that can

observe b == 1

x == b must be visible
to any thread that can

observe a == 2.

Result

a = 2

x = b

b = 1

y = a

m2() on
CPU 2

m1() on 
CPU 1

Surprising Trace
Prevented

The two happens-
before operations
mean that if CPU 2 can
observe b = 1, it must
also observe y = a.
!

The compiler and
runtime cooperate to
prevent the non-SC
trace from occurring.

no!

Rights and Responsibilities

• Programmer is responsible for ensuring the
presence of a happens-before between
every pair of references to a given datum.

• In exchange, JMM guarantees that
program behavior will be SC

• Terminology: a missing happens-before is
called a data race.

Ensuring Happens-Before

• Single-threaded code naturally has H-Bs

• To ensure H-Bs in concurrent code, use:

• immutability (final) with safe publication

• primitives (volatile, mutex, atomics)

• concurrency-safe library classes

• concurrency-safe frameworks and
programming models, e.g. Akka

MESI Example 3-1
MESI Example 2 but modified with volatile

void m1() {
 A = 1;
 B = 1;
}

void m2() {
 while (B == 0)
 ;
 assert(A == 1);
}

CPU 1 CPU 2

volatile int a, b; // both zero

MESI Example 3-2

Memory

 CPU 2 Store Buffer Cache Invalidate Q

 CPU 1 Store Buffer Cache Invalidate Q

b == 0

a == 0

MESI Example 3-3

Memory

 CPU 2 Store Buffer Cache Invalidate Q

 CPU 1 Store Buffer Cache Invalidate Q

b == 0

a == 0

 . . .
 a = 1

MESI Example 3-4

Memory

 CPU 2 Store Buffer Cache Invalidate Q

 CPU 1 Store Buffer Cache Invalidate Q

b == 0

a == 0

 . . . etc . . .

a == 1
 CPU 1 Store Buffer Cache Invalidate Q

i

a == 1 b == 0

“Read/Invalidate”
MESI control message

MESI Example 3-5

Memory

 CPU 2 Store Buffer Cache Invalidate Q

 CPU 1 Store Buffer Cache Invalidate Q

b == 0

a == 0

 . . . etc . . .

a == 1
 CPU 1 Store Buffer Cache Invalidate Q

i

a == 1 b == 0

MESI read response

a == 0

MESI Example 3-6

Memory

 CPU 2 Store Buffer Cache Invalidate Q

 CPU 1 Store Buffer Cache Invalidate Q

b == 0

a == 0

 . . . etc . . .

a == 1
 CPU 1 Store Buffer Cache Invalidate Q

i

a == 1 b == 0

“Read” message for b in
flight

while (b == 0)
 ;

a == 0

MESI Example 3-7

Memory

 CPU 2 Store Buffer Cache Invalidate Q

 CPU 1 Store Buffer Cache Invalidate Q

b == 0

a == 0

 . . . etc . . .

a == 1
 CPU 1 Store Buffer Cache Invalidate Q

i

 b = 1

a == 1 b == 0

while (b == 0)
 ;

“Read” message for b in
flight

Write new value of b but
store buffer is full

a == 0

MESI Example 3-8

Memory

 CPU 2 Store Buffer Cache Invalidate Q

 CPU 1 Store Buffer Cache Invalidate Q

b == 0

a == 0

 . . . etc . . .

a == 1
 CPU 1 Store Buffer Cache Invalidate Q

i

b == 1

while (b == 0)
 ;

“Read” message for b in
flight

a == 1

CHANGE: write to b
forces a to cache

MESI Example 3-9

Memory

 CPU 2 Store Buffer Cache Invalidate Q

 CPU 1 Store Buffer Cache Invalidate Q

b == 0

a == 0

 . . . etc . . .

a == 1
 CPU 1 Store Buffer Cache Invalidate Q

i

while (b == 0)
 ;

“Read” message processed

b == 1

a == 1

MESI Example 3-10

Memory

 CPU 2 Store Buffer Cache Invalidate Q

 CPU 1 Store Buffer Cache Invalidate Q

b == 0

a == 0

 . . . etc . . .

a == 1
 CPU 1 Store Buffer Cache Invalidate Q

i

while (b == 0)
 ;

b == 1

“Read” response for b

b == 1

a == 1

MESI Example 3-11

Memory

 CPU 2 Store Buffer Cache Invalidate Q

 CPU 1 Store Buffer Cache Invalidate Q

b == 0

a == 0

 . . . etc . . .

a == 1
 CPU 1 Store Buffer Cache Invalidate Q

i

b == 1

assert (a == 1)
b == 1

Assertion causes CPU 2
to read value of a

a == 1

MESI Example 3-12

Memory

 CPU 2 Store Buffer Cache Invalidate Q

 CPU 1 Store Buffer Cache Invalidate Q

b == 0

a == 0

 . . . etc . . .

a == 1
 CPU 1 Store Buffer Cache Invalidate Q

a == 1

b == 1

assert (a == 1)
b == 1

CHANGE: read value of
a forces invalidate

i

Stalled for cache …

MESI Example 3-13

Memory

 CPU 2 Store Buffer Cache Invalidate Q

 CPU 1 Store Buffer Cache Invalidate Q

b == 0

a == 0

 . . . etc . . .

a == 1
 CPU 1 Store Buffer Cache Invalidate Q

a == 1

b == 1

assert (a == 1)
b == 1

Stalled for cache … MESI “read” message
issued for a

MESI Example 3-14

Memory

 CPU 2 Store Buffer Cache Invalidate Q

 CPU 1 Store Buffer Cache Invalidate Q

b == 0

a == 1

 . . . etc . . .

a == 1
 CPU 1 Store Buffer Cache Invalidate Q

b == 1

b == 1

“Read” response for
value of a

a == 1

assert (a == 1)

Stalled for cache …

MESI Example 3-15

Memory

 CPU 2 Store Buffer Cache Invalidate Q

 CPU 1 Store Buffer Cache Invalidate Q

b == 0

 . . . etc . . .

a == 1
 CPU 1 Store Buffer Cache Invalidate Q

a == 1

b == 1

assert (a == 1)
b == 1

Stalled for cache … Cache supplying a

a == 1

MESI Example 3-16

Memory

 CPU 2 Store Buffer Cache Invalidate Q

 CPU 1 Store Buffer Cache Invalidate Q

b == 0

 . . . etc . . .

a == 1
 CPU 1 Store Buffer Cache Invalidate Q

a == 1

b == 1

assert (a == 1)
b == 1

Assertion passes!

a == 1

Where Are We?

• Volatile is one way to express happens-
before relationships

• Prevents reordering in the compilers

• At runtime, JIT generates architecture-
specific opcodes to

• prevent memory op reordering in hardware

• prevent deferred processing in hardware

Generalizing on the JMM…

• Go

• New language from Google

• Memory model expressed in terms of
“happens-before” as in JMM.

• Akka

• Async framework for Java, Scala, …

• Spec makes reference to JMM

Other Languages

• C

• Explicit (compiler directives, asms)

• C++

• Interesting memory model in C++ 2011

• Objective-C

• Also low level, language-specific features

And More Languages

• C#

• Similar to Java

• Rust

• Concurrent task abstraction (a lá Occam?);
No shared memory in “safe” code

• Dalvik (Android virtual machine)

• Historically broken (Stackoverflow post)

Explicit Control in C

• Compiler directives/annotations/asms to
prevent aggressive compiler reordering

• Linux kernel: macros expand to explicit
memory barrier instructions

void m1(void) {
 stmt-1;
 smp_mb();
 stmt-2;
}

Summary

• These issues affect all languages that
support programming with threads

• Java community was ahead of the curve
in addressing them

• Awareness wins - you may not program
against the JMM, but understanding it is
powerful.

• Keep learning - avoid “DIY” and use the
highest level tools you can.

References

http://bitly.com/bundles/pdxjjb/2
!

Contains all the “bit.ly” links
from this presentation

http://bitly.com/bundles/pdxjjb/2

THANK YOU

• Java Agent team and so many others at
New Relic for attending my practice talks
and providing feedback…

• And everyone who has attended one
version or another of this talk.

Q&A
!

Followed By
!

Lunch

