
STREAM PROCESSING AT
LINKEDIN: APACHE KAFKA &
APACHE SAMZA

Processing billions of events every day

Neha Narkhede

¨  Co-founder and Head of Engineering @ Stealth
Startup

¨  Prior to this…
¤ Lead, Streams Infrastructure @ LinkedIn (Kafka &

Samza)
¤ One of the initial authors of Apache Kafka, committer

and PMC member

¨  Reach out at @nehanarkhede

Agenda

¨  Real-time Data Integration
¨  Introduction to Logs & Apache Kafka
¨  Logs & Stream processing
¨  Apache Samza
¨  Stateful stream processing

The Data Needs Pyramid

Physiological

Safety

Love/Belonging

Esteem

 Self
actualization

Maslow's hierarchy of needs

Data collection

Data processing

Understanding

Automation

Data needs

Agenda

¨ Real-time Data Integration
¨  Introduction to Logs & Apache Kafka
¨  Logs & Stream processing
¨  Apache Samza
¨  Stateful stream processing

Increase in diversity of data

1980+

2000+

2010+

Siloed
data
feeds

Database data (users, products, orders etc)

IoT sensors

Events (clicks, impressions, pageviews)
Application logs (errors, service calls)
Application metrics (CPU usage, requests/sec)

Explosion in diversity of systems

¨  Live Systems
¤ Voldemort
¤ Espresso
¤ GraphDB
¤ Search
¤ Samza

¨  Batch
¤ Hadoop
¤ Teradata

Data integration disaster

Oracle
Oracle

Oracle User Tracking

Hadoop
Log

Search
Monitoring

Data

Warehous

e

Social

Graph

Rec.

Engine
Search Email

Voldemort
Voldemort

Voldemort

Espresso
Espresso

Espresso
Logs

Operational

Metrics

Production Services

...Security

Centralized service

Oracle
Oracle

Oracle User Tracking

Hadoop
Log

Search

Monitorin

g

Data

Warehous

e

Social

Graph

Rec

Engine &

Life

Search Email

Voldemort
Voldemort

Voldemort

Espresso
Espresso

Espresso
Logs

Operational

Metrics

Production Services

...Security

Data Pipeline

Agenda

¨  Real-time Data Integration

¨ Introduction to Logs &
Apache Kafka

¨  Logs & Stream processing
¨  Apache Samza
¨  Stateful stream processing

Kafka at 10,000 ft

¨  Distributed from
ground up

¨  Persistent
¨  Multi-subscriber

Cluster of brokers

Producer
Producer

Producer
Producer

Producer
Producer

Producer
Consumer

Producer
Consumer

Producer
Consumer

Key design principles

¨  Scalability of a file system
¤ Hundreds of MB/sec/server throughput
¤ Many TBs per server

¨  Guarantees of a database
¤ Messages strictly ordered
¤ All data persistent

¨  Distributed by default
¤ Replication model
¤ Partitioning model

Kafka adoption

Apache Kafka @ LinkedIn

¨  175 TB of in-flight log data per colo
¨  Low-latency: ~1.5ms
¨  Replicated to each datacenter
¨  Tens of thousands of data producers
¨  Thousands of consumers
¨  7 million messages written/sec
¨  35 million messages read/sec
¨  Hadoop integration

The data structure every systems engineer should
know

Logs

The Log

¨  Ordered
¨  Append only
¨  Immutable

0 1 2 3 4 5 6 7 8 9 10 11 12

1st record next record written

The Log: Partitioning

0 1 2 3 4 5 6 7 8 9 10 11 12Partition 0

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 10 11 12

Partition 1

Partition 2 13 14 15 16

Logs: pub/sub done right

0 1 2 3 4 5 6 7 8 9 10 11 12

writes

Data source

Destination
system A
(time = 7)

Destination
system B
(time = 11)

reads reads

Logs for data integration

User updates
profile with

new job

Newsfeed

KAFKA

Search Hadoop Standardization
engine

Agenda

¨  Real-time Data Integration
¨  Introduction to Logs & Apache Kafka

¨ Logs & Stream processing
¨  Apache Samza
¨  Stateful stream processing

Stream processing = f(log)

Log A Job 1 Log B

Stream processing = f(log)

Log A Job 1

Job 2

Log B Log C

Log D Log E

Apache Samza at LinkedIn

User updates
profile with

new job

Newsfeed

KAFKA

Search Hadoop Standardization
engine

Latency spectrum of data systems

Synchronous (milliseconds)

RPC

Batch (Hours)

Latency

Asynchronous processing
(seconds to minutes)

Agenda

¨  Real-time Data Integration
¨  Introduction to Logs & Apache Kafka
¨  Logs & Stream processing

¨ Apache Samza
¨  Stateful stream processing

Samza API

public interface StreamTask {

 void process (IncomingMessageEnvelope envelope,
 MessageCollector collector,
 TaskCoordinator coordinator);

}

getKey(), getMsg()

sendMsg(topic, key, value)

commit(), shutdown()

Samza Architecture (Logical view)

Task 1 Task 2 Task 3

Log A

Log B

partition 0 partition 1 partition 2

partition 0 partition 1

Samza Architecture (Logical view)

Task 1 Task 2 Task 3

Log A

Log B

partition 0 partition 1 partition 2

partition 0 partition 1

Samza container 1 Samza container 2

Samza Architecture (Physical view)

Samza container 1 Samza container 2

Host 1 Host 2

Samza Architecture (Physical view)

Samza container 1 Samza container 2

Host 1 Host 2

Samza
YARN AM

Node manager Node manager

Samza Architecture (Physical view)

Samza container 1 Samza container 2

Host 1 Host 2

Samza
YARN AM

Node manager Node manager

Kafka Kafka

Map Reduce Map Reduce YARN AM

Node manager Node manager

HDFS HDFS

Host 1 Host 2

Samza Architecture: Equivalence to
Map Reduce

M/R Operation Primitives

¨  Filter records matching some condition
¨  Map record = f(record)
¨  Join Two/more datasets by key
¨  Group records with same key
¨  Aggregate f(records within the same group)
¨  Pipe job 1’s output => job 2’s input

M/R Operation Primitives on streams

¨  Filter records matching some condition
¨  Map record = f(record)
¨  Join Two/more datasets by key
¨  Group records with same key
¨  Aggregate f(records within the same group)
¨  Pipe job 1’s output => job 2’s input

Requires state
maintenance

Agenda

¨  Real-time Data Integration
¨  Introduction to Logs & Apache Kafka
¨  Logs & Stream processing
¨  Apache Samza

¨ Stateful stream processing

Example: Newsfeed

User 567 posted "Hello World"

Status update log

Fan out
messages to

followers

Push notification log

567 -> [123, 679, 789, ...]
999 -> [156, 343, ...]

User 989 posted "Blah Blah"
User ... posted "..."

External connection DB

Refresh user 123's newsfeed
Refresh user 679's newsfeed
Refresh user ...'s newsfeed

Disk

100-500K msg/sec/node 100-500K msg/sec/node

1-5K queries/sec ??
ex: Cassandra, MongoDB, etc

Remote state

Samza task
partition 0

Samza task
partition 1

Local state vs Remote state: Remote

❌  Performance
❌  Isolation
❌  Limited APIs

Local

LevelDB/RocksDB

Samza task
partition 0

Samza task
partition 1

Local

LevelDB/RocksDB

Local state: Bring data closer to
computation

Local

LevelDB/RocksDB

Samza task
partition 0

Samza task
partition 1

Local

LevelDB/RocksDB

Local state: Bring data closer to
computation

Disk Change log stream

Example Revisited: Newsfeed

User 567 posted "Hello World"

Status update log New connection log

Fan out
messages to

followers

Push notification log

567 -> [123, 679, 789, ...]
999 -> [156, 343, ...]

User 123 followed 567
User 890 followed 234

User ... followed ...
User 989 posted "Blah Blah"
User ... posted "..."

Refresh user 123's newsfeed
Refresh user 679's newsfeed
Refresh user ...'s newsfeed

Fault tolerance?

Samza container 1 Samza container 2

Host 1 Host 2

Samza
YARN AM

Node manager Node manager

Kafka Kafka

Local

LevelDB/RocksDB

Samza task
partition 0

Samza task
partition 1

Local

LevelDB/RocksDB

Durable change log

Fault tolerance in Samza

Slow jobs

Log A Job 1

Job 2

Log B Log C

Log D Log E

❌  Drop data
❌  Backpressure
❌  Queue
❌ In memory
✅ On disk (KAFKA)

Summary

¨  Real time data integration is crucial for the success
and adoption of stream processing

¨  Logs form the basis for real time data integration
¨  Stream processing = f(logs)
¨  Samza is designed from ground-up for scalability

and provides fault-tolerant, persistent state

Thank you!

¨  The Log
¤ http://bit.ly/the_log

¨  Apache Kafka
¤ http://kafka.apache.org

¨  Apache Samza
¤ http://samza.incubator.apache.org

¨  Me
¤ @nehanarkhede
¤ http://www.linkedin.com/in/nehanarkhede

