
Production Debugging @ 100mph

About Me

Co-founder – Takipi (God mode in Production Code).

Co-founder – VisualTao (acquired by Autodesk).

Director, AutoCAD Web & Mobile.

Software Architect at IAI Aerospace.

Coding for the past 16 years - C++, Delphi, .NET, Java.

Focus on real-time, scalable systems.

Blogs at takipiblog.com

http://www.takipiblog.com

Overview

Dev-stage debugging is forward-tracing.

Production debugging is focused on backtracing.

Modern production debugging poses two challenges: state isolation and data distribution.

Direct correlation between quality of data to MTTR.

Agenda

1. Distributed logging – best practices.

1. Preemptive jstacks

2. Java 8 – state of the stack

3. Inspecting state with Btrace

1. Extracting state with custom Java agents.

Solid Logging Practices

1. Code context.

2. Time + duration.

3. Thread ID (preferably name).

4. Transaction ID (for async & distributed debugging).

Make sure these are baked into your logging context –

Transaction ID

• Logging is usually a multi–threaded / process affair.

• Generate a UUID at every thread entry point into your app – the transaction ID.

• Append the ID into each log entry.

• Try to maintain it across machines – critical for distributed / async debugging.

Thread Names

• Thread name is a mutable property.

• Can be set to hold transaction specific state.

• Some frameworks (e.g. EJB) don’t like that.

• Can be super helpful when debugging in tandem with jstack.

Thread Names (2)

• Transaction ID

• Servlet parameters, Queue message ID

• Start time

Thread.currentThread().setName(Context, TID, Params, Time,..)

"pool-1-thread-1" #17 prio=5 os_prio=31 tid=0x00007f9d620c9800 nid=0x6d03
in Object.wait() [0x000000013ebcc000]

”MsgID: AB5CAD, type: Analyze, queue: ACTIVE_PROD, TID: 5678956, TS:
11/8/20014 18:34 "

#17 prio=5 os_prio=31 tid=0x00007f9d620c9800 nid=0x6d03 in Object.wait()
[0x000000013ebcc000]

Your last line of defense - critical to pick up on unhandled exceptions.

Setting the callback:

This is where thread Name + TLS are critical as the only surviving state.

Global Exception Handlers

public static void Thread.setDefaultUncaughtExceptionHandler(UncaughtExceptionHandler eh)

void UncaughtExceptionHandler.uncaughtException(Thread t, Throwable e) {

logger.error(“Uncaught error in thread “ + t, e);
}

Preemptive jstack

• A production debugging foundation.

• Presents two issues –

– Activated only in retrospect.

– No state: does not provide any variable state.

• Let’s see how we can overcome these with preemptive jstacks.

Preemptive jstack - Demo

github.com/takipi/jstack

https://github.com/takipi/jstack
https://github.com/takipi/jstack
https://github.com/takipi/jstack

60-100% > Atomics

Native frames, monitors

Java 8 stack traces

BTrace

• An advanced open-source tool for extracting state from a live JVM.

• Uses a Java agent and a meta-scripting language to capture state.

• Pros: Lets you probe variable state without modifying / restarting the JVM.

• Cons: read-only querying using a custom syntax and libraries.

BTrace - Restrictions

• Can not create new objects.

• Can not create new arrays.

• Can not throw exceptions.

• Can not catch exceptions.

• Can not make arbitrary instance or static method calls - only the public static methods of

com.sun.btrace.BTraceUtils class may be called from a BTrace program.

• Can not assign to static or instance fields of target program's classes and objects. But,

BTrace class can assign to it's own static fields ("trace state" can be mutated).

• Can not have instance fields and methods. Only static public void returning methods are

allowed for a BTrace class. And all fields have to be static.

• Can not have outer, inner, nested or local classes.

• Can not have synchronized blocks or synchronized methods.

• can not have loops (for, while, do..while)

• Can not extend arbitrary class (super class has to be java.lang.Object)

• Can not implement interfaces.

• Can not contains assert statements.

• Can not use class literals.

BTrace - Demo

kenai.com/projects/btrace

https://kenai.com/projects/btrace

Custom Java Agents

• An advanced technique for instrumenting code dynamically.

• The foundation for most profiling / debugging tools.

• Two types of agents: Java and Native.

• Pros: extremely powerful technique to collect state from a live app.

• Cons: requires knowledge of creating verifiable bytecode.

http://www.takipiblog.com/double-agent-java-vs-native-agents/

Custom Agent - Demo

github.com/takipi/debugAgent

https://github.com/takipi/debugagent
https://github.com/takipi/debugagent
https://github.com/takipi/debugagent

Auto generating bytecode (ASMifier)

Native Agents

• Java agents are written in Java. Have access to the Instrumentation API.

• Native agents – written in C++.

• Have access to JVMTI – the JVM’s low-level set of APIs and capabilities.

– JIT compilation, GC, Monitor, Exception, breakpoints, ..

• More complex to write. Capability performance impact.

• Platform dependent.

http://www.takipiblog.com/how-to-write-your-own-java-scala-debugger/

Takipi - Detect, priotitize and debug bugs at high-scale.

tal.weiss@takipi.com

@takipid

takipiblog.com

Thanks!

mailto:Tal.weiss@takipi.com
mailto:Tal.weiss@takipi.com
mailto:Tal.weiss@takipi.com
twitter.com\takipid
http://www.takipiblog.com
http://www.takipiblog.com

