
THE IMMUTABLE FRONTEND IN
CLOJURESCRIPT
Logan Linn (@loganlinn)
QCon SF 2014

1

PRISMATIC

Personalized, interest-based newsfeeds

Crawlers, Machine Learning, Clients

We’re very functional

99.9% Clojure backend

ClojureScript frontend

We <3 open-source
2

3

IMMUTABLE FRONTEND

ClojureScript gives us immutability and more

Immutability simplifies data-flow

React allows us to render predictably with pure functions

4

IMMUTABLE FRONTEND

5

ReactApp
State

User
Events

API
Data

Component
Tree

D
O
M

OUTLINE

Challenges of a Building a Frontend

Immutability

ClojureScript

An Immutable Frontend

6

CHALLENGES OF BUILDING A FRONTEND

Interactive UIs have a human factor

Asynchronous programming

Complexity comes from every angle

Software complexity is a compounding debt

7

INCIDENTAL COMPLEXITY

Managing state

8

INCIDENTAL COMPLEXITY

Managing state

Mutating data

9

MODEL-VIEW-*

Domain vs Presentational data

Keeping data and DOM in sync

MVC, MVP, MVVM, etc.

10

animate

EVENTS AND DATA-BINDING

Most frameworks today structured around Models

Models publish changes via global events

Views subscribe to changes and update

Data bindings let you be declarative

11

ControllerModel View

12

EVENT AND DATA-BINDING

Encourages mutation

Data-flow becomes opaque, potentially hazardous

Makes it easier, but not simpler

13

MVC DATA-FLOW

14

MVC DATA-FLOW

15

ControllerModel View

MVC DATA-FLOW

16

ControllerModel View

DOM

User
Events

What if we prioritized a simple data-flow?

17

SINGLE-DIRECTION DATA FLOW

Pure
Render

18

DOMApp
State

User
Events

IMMUTABILITY

19

A MUTABLE WORLD

20

x = Domain.List.from([‘x'])
y = x.unshift('y')
z = x.unshift('z')

print(z.second()) // 'x' or 'y'?
print(x) // ['x'] or ['z', 'y', 'x']?

AN IMMUTABLE WORLD…

21

x = Domain.List.from([‘x'])
y = x.unshift('y')
z = x.unshift('z')

print(z.second()) // 'x', final answer!
print(x) // ['x'], fasho!

RENDERING WITH PURE FUNCTIONS

22

ƒ(S1) = D1
ƒ(S2) = D2
ƒ(S1) = D1

t

IMMUTABILITY ON THE FRONTEND

Simplicity & Clarity

23

IMMUTABILITY ON THE FRONTEND

Simplicity & Clarity

Predictability

24

IMMUTABILITY ON THE FRONTEND

Simplicity & Clarity

Predictability

Less defensive programming, i.e.
_.cloneDeep(obj)

25

IMMUTABILITY ON THE FRONTEND

Simplicity & Clarity

Predictability

Less defensive programming, i.e.
_.cloneDeep(obj)

Constant time dirty checking

26

IMMUTABILITY & PERFORMANCE

Persistent data structures

Structural sharing

Memory efficiency

Conjoin to collection in O(1)

Update hash-map in O(log32 n) vs O(n)

27

ab

c

CLOJURE(SCRIPT)

28

CLOJURE & CLOJURESCRIPT

Dynamic, Functional, Lisp

Clojure

Compiles to JVM bytecode

7 years old

ClojureScript

Compiles to JavaScript

3 years old
29

WHY WE LIKE CLOJURESCRIPT

Clarity & Consistency

Strong core library over clean abstractions

Macros

Share code with rest of code-base

30

"It is better to have 100
functions operate on one

data structure than 10
functions on 10 data

structures."
—Alan Perlis, 1982

MUTATION REQUIRES OPT-IN

Immutable data by default

State modeled with reference to immutable value

Special functions to mutate reference & dereference value

Easy to identify side-effects

31

(def state-ref (atom {}))

(deref state-ref) ;; => {}

(reset! state-ref {:a 1})
@state-ref ;; => {:a 1}

(defn increment-a [state]
 (update-in state [:a] inc))

(increment-a @state-ref) ;; => {:a 2}
@state-ref ;; => {:a 1}

(swap! state-ref increment-a)
@state-ref ;; => {:a 2}

32

SEPARATION OF CONCERNS

Time

Relative moments when events occur

State

A value at a point in time

Identity

Entity associated with state over time
33

AN IMMUTABLE ARCHITECTURE

34

AN IMMUTABLE ARCHITECTURE

35

ReactApp
State

User
Events

HTTP
Data

Component
Tree

D
O
M

AN IMMUTABLE ARCHITECTURE

state

36

AN IMMUTABLE ARCHITECTURE

component

component

component

state

component

37

AN IMMUTABLE ARCHITECTURE

state

component

component component

component

38

AN IMMUTABLE ARCHITECTURE

state

component component

component

component

39

AN IMMUTABLE ARCHITECTURE

state

component component

40

AN IMMUTABLE ARCHITECTURE

state

component

41

AN IMMUTABLE ARCHITECTURE

state

component

42

component
tree

actions

AN IMMUTABLE ARCHITECTURE

43

state

component
tree

AN IMMUTABLE ARCHITECTURE

44

state

component
tree

AN IMMUTABLE ARCHITECTURE

45

component
tree

AN IMMUTABLE ARCHITECTURE

46

S1

component
tree

S2

AN IMMUTABLE ARCHITECTURE

47

ReactApp
State

User
Events

HTTP
Data

Component
Tree

D
O
M

AN IMMUTABLE ARCHITECTURE

Immutable application state

Business logic written as pure functions

Declarative rendering

48

APP STATE

Reference to an immutable value

Updating state changes reference

Business logic as pure functions

Compose multiple operations & apply at once

49

App
State

REACT

UI rendering library from Facebook

“Not templating. Not MVC. It’s like a declarative jQuery” -Pete Hunt

Manipulates DOM & handles events (thats all)

Trending, and rightfully so!

50

React
D
O
M

REACT

var HelloMessage = React.createClass({
 render: function() {
 return DOM.div({}, "Hello " + this.props.name);
 }
});

React.render(HelloMessage({name: "QCon"}), mountNode);
React.render(HelloMessage({name: "QCon SF"}), mountNode);

51

REACT

Basic building block is a component with render() method

Data in, “virtual DOM” out

When data changes, render() is re-run

Performs diff between vDOM and actual DOM

Pushes out minimal set of changes to keep in sync

52

React
D
O
M

REACT & CLOJURESCRIPT

Shared design principles

pure and composable functions

simplicity through predictability

Actually useful API

Easy to compose from ClojureScript

Libraries like Om, Reagent, Quiescent
53

DOM2

REACT & CLOJURESCRIPT

54

S1

D1

S2

D2

React

DOM1

SIMPLE OM EXAMPLE

55

WRAP-UP

Immutability & referential transparency have many benefits

Testing & Reasoning

Application architecture

Invest in languages & tools that prioritize simplicity

Clojure & ClojureScript are great!

React is great!
56

THANKS!
@loganlinn
@prismatic

57

