THE IMMUTABLE FRONTEND IN
LT EH UK SRR

Logan Linn (@loganlinn)
GCon R 2014

A

PRISMATIC

Personalized, interest-based newsfeeds
Crawlers, Machine Learning, Clients

We're very functional
99.9% Clojure backend

ClojureScript frontend

A

We <3 open-source

/

G\ danielszmu

verbs, nouns and file watch semantics

['ve recently had a fascination with file wanted to share some of my thoughts: Typically
watchers semantics in clojure libraries. Having file watchers are implemented using either one
trialed bunch of them in the past, I decided that of two patterns: verb based - (add-watch

it was time to have a go at one myself and directory callback options)noun based - (start...

0 | San Francisco, California v Real Estate Housing

How Do You Afford S.F.?

N ER-ER BN
This is part of "Live Large, Spend
Less,” a comprehensive guide to
surviving (and even flourishing) in
America’s most expensive city. See
all of the stories here. Janelle Cruz,

27 Income: $1,200-$2,000 a month “I

IMMUTABLE FRONTEND

ClojureScript gives us immutability and more
Immutability simplifies data-flow

React allows us to render predictably with pure functions

Component

Tree

5

OUEEELINE

Challenges of a Building a Frontend
Immutability
ClojureScript

An Immutable Frontend

CHAFLENGES OF BULEDING & ERONTEND

Interactive Uls have a human factor
Asynchronous programming
Complexity comes from every angle

Software complexity is a compounding debt

NG BN GOV EE XY

Managing state

NG BN GOV EE XY

Managing state

Mutating data

MIQDEE-VIEW -7

Domain vs Presentational data
Keeping data and DOM in sync

MVC, MVP, MVVM, eftc.

S

UPDATES MANIPULATES

l |

VIEW CONTROLLER
S
" «f’/
$ Q"

10

EVENTS AND DATA-BINDING

Most frameworks today structured around Models
Models publish changes via global events
Views subscribe to changes and update

Data bindings let you be declarative

tVENT AND DATA-BINDING

Encourages mutation
Data-flow becomes opaque, potentially hazardous

Makes it easier, but not simpler

|3

MV DATA-FLOVY

/ MODEL 4\
UPDATES MANIPULATES

Y

VIEW CONTROLLER
\@ /
@ &
$ Q‘O
X o/

MV DATA-FLOVY

7

Model

/ Controller \

A

-

View

.

16

B N e P e AT 2 el e e Lol il aSD Rl Wt e ., o e e
R N S TN Tl L L SRR TRy L EF S A NPRE T s RIRINA D L ORI S BN R () LR R X T R 2o T T N o o i o ool o R B £ SARSRRIC T - O N - O R = S R4 TP o RN XA = SR Y Nz it

What if we prioritized a simple data-flow?

|7

SN E=DHREC FION DATACELCIVY

User
Events

18

N A R S DY
R R S S P

IVEVAL) FASTE EEY

AU FABLE WORED

X = Domain.List.from([‘x'])
y = X.unshift('y')
z = x.unshift('z')

print(z.second()) // 'x' or 'y'?
print(x) oL X Lor b . Y R

AN IMMUTABLE WORLD...

X = Domain.List.from([‘x'])
y = X.unshift('y')
z = x.unshift('z')

print(z.second()) // 'x', final answer!
print(x) // ['x"'], fasho!

21

REPDERING W PURE BLINC RTINS

f(S1) = D;
£S5)= by
i) = B

EVERAUEEABELEE Y-ON THE BROBEEEND

Simplicity & Clarity

EVERAUEEABELEE Y-ON THE BROBEEEND

Simplicity & Clarity

Predictability

EVERAUEEABELEE Y-ON THE BROBEEEND

Simplicity & Clarity
Predictability

Less defensive programming, i.e.
_.cloneDeep(ob7j)

EVERAUEEABELEE Y-ON THE BROBEEEND

Simplicity & Clarity
Predictability

Less defensive programming, i.e.
.cloneDeep(ob7j)

Constant time dirty checking

26

IMMUTABILITY & PERFORMANCE

Persistent data structures

Structural sharing
Memory efficiency [o-{af- L]
Conjoin to collection in O(1)

Update hash-map in O(logs2 n) vs O(n)

27

ELOIRECSURIFE)

CEORIRE G L CHHIRE SICR

= Dynamic, Functional, Lisp

= Clojure

= Compiles to JVM bytecode
freedom

to focus !
= 7 years old

= ClojureScript
= Compiles to JavaScript

= 3 years old

simplicity

h. empowerment

29

VNEEY WV B IKE L O RESE R |

Clarity & Consistency
Strong core library over clean abstractions
Macros

Share code with rest of code-base

"It is better to have 100
functions operate on one
data structure than 10
functions on 10 data

structures.”
—Alan Perlis, 1982

30

PALTAEION REGUIRES CRT-IN

Immutable data by default
State modeled with reference to immutable value

Special functions to mutate reference & dereference value

Fasy to identify side-effects

31

(def state-ref (atom {}))
(deref state-ref) i

(reset! state-ref {:a 1})
@state-ref Ly

(defn increment-a [state]
(update-1n state [:a] 1nc))

(1ncrement-a @state-ref) ;; =>
@state-ref Lo

(swap! state-ref increment-a)
@state-ref Sl

1}

i a 1}
i 0 2}
f:0 1t

i 2

32

SEPARATHON L CLONCERING

Time

Relative moments when events occur
State

A value at a point in time
Identity

Entity associated with state over time

......

33

ABNANAL LB AR BC TN R E

Component
Tree

‘---------“'

35

AN IMMUTABLE ARCHITECTURE

A

AN IMMUTABLE ARCHITECTURE

AN IMMUTABLE ARCHITECTURE

AN IMMUTABLE ARCHITECTURE

AN IMMUTABLE ARCHITECTURE

AN IMMUTABLE ARCHITECTURE

AN IMMUTABLE ARCHITECTURE

v

component

componer
P tree

TR TTI

SN SNe

AN IMMUTABLE ARCHITECTURE

AN IMMUTABLE ARCHITECTURE

l................
......
l....
ll..
LE RN N N
L |
L
L]
am
mm
am
LB

mnm

.0

...........
L]

l.....

ll..

EEEEENEN

nm

L |

L |

mnm

anm

an

J

*
....
........

t
omponen
5 tree

45

RN e
DT S B
e
AT A A A
S
AL A
Ry
SRR

L5 2

WA

TREET

P 4

o TR

TR

(TSRS

P

55 5 XA

GG S

o TR

AR T 2

I

B S

S, R

S, Y

z T

GRS S

EIRE

RS =0

kA TR X T P

T bl

SN AN TN

¥ CRR R

2 Y TR

A R

TR

PGS

G0

VAR RS S

SR

EEE

VA

SR

R .04

RS A

TR

RO 5% 4

R TR R

T

b

PR

S G XA

S E

DALY -

R T

N

B D

LU, AL i

B,

z R A

e

AN IMMUTABLE ARCHITECTURE

Component

Tree

47

s 3 2 Tl i i ; ¢ ARSI SRR ¥ R SRR S S R R ey e e Ay R R e P
R R s R e A T e A A B A . A R o = e A A A G B R 3 B A 3 e e A N e e A R R R R N R R R B N R e O B e R R N R B e R B G - A oy R A A N Y o 2 R R A o L e R G A e T A R I N - T R = S B B AN e B A G R L R 3) YA A X iR A S A
= ST k : 2 & AR REREL T 26 . s B R 4 E % AR e

AN IMMUTABLE ARCHITECTURE

Immutable application state
Business logic written as pure functions

Declarative rendering

48

e S PR

Reference to an immutable value
Updating state changes reference
Business logic as pure functions

Compose multiple operations & apply at once

49

REAL T

Ul rendering library from Facebook
“Not templating. Not MVC. It's like a declarative |Query” -Pete Hunt

Manipulates DOM & handles events (thats all)

Trending, and rightfully so!

50

Al

HelloMessage = React.createClass({
render: function() {
return DOM.div({}, "Hello " + this.props.name);

}
39

React.render(HelloMessage({name: "QCon"}), mountNode);
React.render(HelloMessage({name: "QCon SF"}), mountNode);

51

REAL T

Basic building block is a component with render() method

Data in, “virtual DOM" out
When data changes, render() is re-run

Performs diff between vDOM and actual DOM

Pushes out minimal set of changes to keep in sync

52

AL Ban CLOTRESE R b

Shared design principles
pure and composable functions
simplicity through predictability
Actually useful API
Fasy to compose from ClojureScript

Libraries like Om, Reagent, Quiescent

53

REAL B oas LR ESLRIP b

A A
q_F

React

SINVTPEE LI A MNP

VVRAE-LUE

Immutability & referential transparency have many benefits
Testing & Reasoning
Application architecture

Invest in languages & tools that prioritize simplicity
Clojure & ClojureScript are great!

React Is great!

56

THANKS!

@prismatic

