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PRISMATIC

Personalized, interest-based newsfeeds
Crawlers, Machine Learning, Clients

We're very functional
99.9% Clojure backend

ClojureScript frontend
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We <3 open-source
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verbs, nouns and file watch semantics

['ve recently had a fascination with file wanted to share some of my thoughts: Typically
watchers semantics in clojure libraries. Having  file watchers are implemented using either one
trialed bunch of them in the past, I decided that  of two patterns: verb based - (add-watch

it was time to have a go at one myself and directory callback options)noun based - (start...
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IMMUTABLE FRONTEND

ClojureScript gives us immutability and more
Immutability simplifies data-flow

React allows us to render predictably with pure functions



Component

Tree

5



OUEEELINE

Challenges of a Building a Frontend
Immutability
ClojureScript

An Immutable Frontend



CHAFLENGES OF BULEDING & ERONTEND

Interactive Uls have a human factor
Asynchronous programming
Complexity comes from every angle

Software complexity is a compounding debt
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Managing state



NG BN GOV EE XY

Managing state

Mutating data
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Domain vs Presentational data
Keeping data and DOM in sync

MVC, MVP, MVVM, eftc.
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EVENTS AND DATA-BINDING

Most frameworks today structured around Models
Models publish changes via global events
Views subscribe to changes and update

Data bindings let you be declarative






tVENT AND DATA-BINDING

Encourages mutation
Data-flow becomes opaque, potentially hazardous

Makes it easier, but not simpler
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MV DATA-FLOVY
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MV DATA-FLOVY
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What if we prioritized a simple data-flow?
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User
Events
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AU FABLE WORED

X = Domain.List.from([‘x'])
y = X.unshift('y')
z = x.unshift('z')

print(z.second()) // 'x' or 'y'?
print(x) oL X Lor b . Y R



AN IMMUTABLE WORLD...

X = Domain.List.from([‘x'])
y = X.unshift('y')
z = x.unshift('z')

print(z.second()) // 'x', final answer!
print(x) // ['x"'], fasho!
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REPDERING W PURE BLINC RTINS

f(S1) = D;
£S5 )= by
i) = B



EVERAUEEABELEE Y-ON THE BROBEEEND

Simplicity & Clarity



EVERAUEEABELEE Y-ON THE BROBEEEND

Simplicity & Clarity

Predictability



EVERAUEEABELEE Y-ON THE BROBEEEND

Simplicity & Clarity
Predictability

Less defensive programming, i.e.
_.cloneDeep(ob7j)



EVERAUEEABELEE Y-ON THE BROBEEEND

Simplicity & Clarity
Predictability

Less defensive programming, i.e.
.cloneDeep(ob7j)

Constant time dirty checking
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IMMUTABILITY & PERFORMANCE

Persistent data structures

Structural sharing
Memory efficiency [o-{af- L]
Conjoin to collection in O(1)

Update hash-map in O(logs2 n) vs O(n)
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= Dynamic, Functional, Lisp

= Clojure

= Compiles to JVM bytecode
freedom

to focus !
= 7 years old

= ClojureScript
= Compiles to JavaScript

= 3 years old

simplicity

h. empowerment
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Clarity & Consistency
Strong core library over clean abstractions
Macros

Share code with rest of code-base

"It is better to have 100
functions operate on one
data structure than 10
functions on 10 data

structures.”
—Alan Perlis, 1982
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PALTAEION REGUIRES CRT-IN

Immutable data by default
State modeled with reference to immutable value

Special functions to mutate reference & dereference value

Fasy to identify side-effects
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(def state-ref (atom {}))
(deref state-ref) i

(reset! state-ref {:a 1})
@state-ref Ly

(defn increment-a [state]
(update-1n state [:a] 1nc))

(1ncrement-a @state-ref) ;; =>
@state-ref Lo

(swap! state-ref increment-a)
@state-ref Sl

1}

i a 1}
i 0 2}
f:0 1t

i 2
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SEPARATHON L CLONCERING

Time

Relative moments when events occur
State

A value at a point in time
Identity

Entity associated with state over time

......
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AN IMMUTABLE ARCHITECTURE

A




AN IMMUTABLE ARCHITECTURE
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AN IMMUTABLE ARCHITECTURE




AN IMMUTABLE ARCHITECTURE
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AN IMMUTABLE ARCHITECTURE
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AN IMMUTABLE ARCHITECTURE




AN IMMUTABLE ARCHITECTURE
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AN IMMUTABLE ARCHITECTURE
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AN IMMUTABLE ARCHITECTURE

Immutable application state
Business logic written as pure functions

Declarative rendering
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Reference to an immutable value
Updating state changes reference
Business logic as pure functions

Compose multiple operations & apply at once
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REAL T

Ul rendering library from Facebook
“Not templating. Not MVC. It's like a declarative |Query” -Pete Hunt

Manipulates DOM & handles events (thats all)

Trending, and rightfully so!

50



Al

HelloMessage = React.createClass({
render: function() {
return DOM.div({}, "Hello " + this.props.name);

}
39

React.render(HelloMessage({name: "QCon"}), mountNode);
React.render(HelloMessage({name: "QCon SF"}), mountNode);
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REAL T

Basic building block is a component with render() method

Data in, “virtual DOM" out
When data changes, render() is re-run

Performs diff between vDOM and actual DOM

Pushes out minimal set of changes to keep in sync
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Shared design principles
pure and composable functions
simplicity through predictability
Actually useful API
Fasy to compose from ClojureScript

Libraries like Om, Reagent, Quiescent
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VVRAE-LUE

Immutability & referential transparency have many benefits
Testing & Reasoning
Application architecture

Invest in languages & tools that prioritize simplicity
Clojure & ClojureScript are great!

React Is great!
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THANKS!

@prismatic




