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PRISMATIC

Personalized, interest-based newsfeeds 

Crawlers, Machine Learning, Clients 

We’re very functional 

99.9% Clojure backend 

ClojureScript frontend 

We <3 open-source
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IMMUTABLE FRONTEND

ClojureScript gives us immutability and more 

Immutability simplifies data-flow 

React allows us to render predictably with pure functions
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IMMUTABLE FRONTEND
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OUTLINE

Challenges of a Building a Frontend 

Immutability 

ClojureScript 

An Immutable Frontend
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CHALLENGES OF BUILDING A FRONTEND

Interactive UIs have a human factor 

Asynchronous programming 

Complexity comes from every angle 

Software complexity is a compounding debt
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INCIDENTAL COMPLEXITY

Managing state
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INCIDENTAL COMPLEXITY

Managing state 

Mutating data
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MODEL-VIEW-*

Domain vs Presentational data 

Keeping data and DOM in sync 

MVC, MVP, MVVM, etc.
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EVENTS AND DATA-BINDING

Most frameworks today structured around Models 

Models publish changes via global events 

Views subscribe to changes and update 

Data bindings let you be declarative
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ControllerModel View
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EVENT AND DATA-BINDING

Encourages mutation 

Data-flow becomes opaque, potentially hazardous 

Makes it easier, but not simpler

13



MVC DATA-FLOW

14



MVC DATA-FLOW
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ControllerModel View



MVC DATA-FLOW
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What if we prioritized a simple data-flow?
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SINGLE-DIRECTION DATA FLOW

Pure
Render
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IMMUTABILITY
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A MUTABLE WORLD
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x = Domain.List.from([‘x'])
y = x.unshift('y')
z = x.unshift('z')

print(z.second()) // 'x' or 'y'?
print(x)          // ['x'] or ['z', 'y', 'x']?



AN IMMUTABLE WORLD…
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x = Domain.List.from([‘x'])
y = x.unshift('y')
z = x.unshift('z')

print(z.second()) // 'x', final answer!
print(x)          // ['x'], fasho!



RENDERING WITH PURE FUNCTIONS
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ƒ(S1) = D1
ƒ(S2) = D2
ƒ(S1) = D1
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IMMUTABILITY ON THE FRONTEND

Simplicity & Clarity
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IMMUTABILITY ON THE FRONTEND

Simplicity & Clarity 

Predictability

24



IMMUTABILITY ON THE FRONTEND

Simplicity & Clarity 

Predictability 

Less defensive programming, i.e. 
_.cloneDeep(obj)
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IMMUTABILITY ON THE FRONTEND

Simplicity & Clarity 

Predictability 

Less defensive programming, i.e. 
_.cloneDeep(obj) 

Constant time dirty checking
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IMMUTABILITY & PERFORMANCE

Persistent data structures 

Structural sharing 

Memory efficiency  

Conjoin to collection in O(1) 

Update hash-map in O(log32 n) vs O(n)
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CLOJURE(SCRIPT)
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CLOJURE & CLOJURESCRIPT

Dynamic, Functional, Lisp 

Clojure 

Compiles to JVM bytecode 

7 years old 

ClojureScript 

Compiles to JavaScript 

3 years old
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WHY WE LIKE CLOJURESCRIPT

Clarity & Consistency 

Strong core library over clean abstractions 

Macros 

Share code with rest of code-base
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"It is better to have 100 
functions operate on one 

data structure than 10 
functions on 10 data 

structures."  
—Alan Perlis, 1982



MUTATION REQUIRES OPT-IN

Immutable data by default 

State modeled with reference to immutable value 

Special functions to mutate reference & dereference value 

Easy to identify side-effects
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(def state-ref (atom {}))

(deref state-ref)         ;; => {}

(reset! state-ref {:a 1})
@state-ref                ;; => {:a 1}

(defn increment-a [state]
  (update-in state [:a] inc))

(increment-a @state-ref)  ;; => {:a 2}
@state-ref                ;; => {:a 1}

(swap! state-ref increment-a)
@state-ref                ;; => {:a 2}
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SEPARATION OF CONCERNS

Time 

Relative moments when events occur 

State 

A value at a point in time 

Identity 

Entity associated with state over time
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AN IMMUTABLE ARCHITECTURE
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AN IMMUTABLE ARCHITECTURE
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AN IMMUTABLE ARCHITECTURE

state
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AN IMMUTABLE ARCHITECTURE
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AN IMMUTABLE ARCHITECTURE
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AN IMMUTABLE ARCHITECTURE
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AN IMMUTABLE ARCHITECTURE

state

component component
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AN IMMUTABLE ARCHITECTURE

state

component
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AN IMMUTABLE ARCHITECTURE
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actions

AN IMMUTABLE ARCHITECTURE
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AN IMMUTABLE ARCHITECTURE
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AN IMMUTABLE ARCHITECTURE
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AN IMMUTABLE ARCHITECTURE
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AN IMMUTABLE ARCHITECTURE
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AN IMMUTABLE ARCHITECTURE

Immutable application state 

Business logic written as pure functions 

Declarative rendering
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APP STATE

Reference to an immutable value 

Updating state changes reference 

Business logic as pure functions 

Compose multiple operations & apply at once
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REACT

UI rendering library from Facebook 

“Not templating. Not MVC. It’s like a declarative jQuery” -Pete Hunt 

Manipulates DOM & handles events (thats all) 

Trending, and rightfully so!
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REACT

var HelloMessage = React.createClass({
  render: function() {
    return DOM.div({}, "Hello " + this.props.name);
  }
});

React.render(HelloMessage({name: "QCon"}), mountNode);
React.render(HelloMessage({name: "QCon SF"}), mountNode);
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REACT

Basic building block is a component with render() method 

Data in, “virtual DOM” out 

When data changes, render() is re-run 

Performs diff between vDOM and actual DOM 

Pushes out minimal set of changes to keep in sync
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REACT & CLOJURESCRIPT

Shared design principles 

pure and composable functions 

simplicity through predictability 

Actually useful API 

Easy to compose from ClojureScript 

Libraries like Om, Reagent, Quiescent
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DOM2

REACT & CLOJURESCRIPT
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SIMPLE OM EXAMPLE
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WRAP-UP

Immutability & referential transparency have many benefits 

Testing & Reasoning 

Application architecture 

Invest in languages & tools that prioritize simplicity 

Clojure & ClojureScript are great! 

React is great!
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THANKS!
@loganlinn 
@prismatic
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