€databricks

€databricks

Unified Big Data Processing
with Apache Spark

Matei Zaharia

What is Apache Spark?

Fast & general engine for big data processing

Generalizes MapReduce model to support more types
of processing

Most active open source project in big data

€databricks

About Databricks

Founded by the creators of Spark in 2013

Continues to drive open source Spark development,
and offers a cloud service (Databricks Cloud)

Partners to support Spark with Cloudera, MapR,
Hortonworks, Datastax

€databricks

Spark Community

2000 % 350000 %
Q, 8.
» 300000 7z
1500 250000
200000
1000 c @ %
O » 5 150000 S > 0
'—§ Z E 5 i F8 ~ - _E_ |
g~ 50000 = B
0 0
Commits Lines of Code Changed

Activity in past 6 months

Community Growth

Contributors per Month to Spark

100

75 //
o J
- Nakd

0 W—'—"/.’JWJ

2010 2011 2012 2013 2014

2-3x more activity than Hadoop, Storm, .
MongoDB, NumPy, D3, Julia, .. icks

Overview
Why a unified engine?
Spark execution model

Why was Spark so general?

What's next

€databricks

History: Cluster Programming Models

2004

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay @google.com

Google, Inc.

Abstract

MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with

€databricks

MapReduce

A general engine for batch processing

We wrote the first version of the MapReduce library in
February of 2003, and made significant enhancements to |
it in August of 2003, including the locality optimization,
dynamic load balancing of task execution across worker
machines, etc. Since that time, we have been pleasantly
surprised at how broadly applicable the MapReduce li-
brary has been for the kinds of problems we work on.
It has been used across a wide range of domains within
Google, including:

€databricks

Beyond MapReduce

MapReduce was great for batch processing, but users
quickly needed to do more:

More complex, multi-pass algorithms
More interactive ad-hoc queries
More real-time stream processing

Result: many specialized systems for these workloads

€databricks

Big Data Systems Today

MapReduce

General batch
processing

Pregel Dremel
Giraph pril]
Impala Presto

Storm S4

Specialized systems
for new workloads

€databricks

Problems with Specialized Systems

More systems to manage, tune, deploy

Can't combine processing types in one application
Even though many pipelines need to do this!
E.g. load data with SQL, then run machine learning

In many pipelines, data exchange between
engines is the dominant cost!

€databricks

Big Data Systems Today

Pregel Dremel
MapReduce Giraph Drill sp?"(\Z
Impala Presto °
Storm S4
General batch Specialized systems Unified engine
processing for new workloads

€databricks

Overview
Why a unified engine?
Spark execution model

Why was Spark so general?

What's next

€databricks

Background

Recall 3 workloads were issues for MapReduce:
More complex, multi-pass algorithms
More interactive ad-hoc queries
More real-time stream processing

While these look different, all 3 need one thing that
MapReduce lacks: efficient data sharing

€databricks

Data Sharing in MapReduce

HDEFS HDFS HDFS HDFS
read write read write
— —_— —_— — —
| l J L] L] []
Input

HDES Juer —> , result 1
read
/> —> result 2
Input o '

Slow due to data replication and disk I/O

Wh
at
We,d Li]_-{e

\\\\\\\\“**\MM-
& l-*“\\\\\#\\\\\‘-
\ “““‘“\“\“\\\M‘M
\i»\\\\ss‘-\\\\\\\\;\\i\\\\"‘\\‘\“\\

et
\\\»\\\\\\\w

SV
\\\\\\\\\\\\“\\\\

l

Il-e_t.
cessi
wwwwww\@\ *‘\\
S
i @@*“\
4
14
r

D .
e
emory

10
X faS
te
I than et
sl
and d
lsk

Input

Spark Model

Resilient Distributed Datasets (RDDs)

Collections of objects that can be stored in memory or
disk across a cluster

Built via parallel transformations (map, filter, ..)
Fault-tolerant without replication

€databricks

Example: Log Mining

Load error messages from a log into memory, then
interactively search for various natterns

Tines = spark.textFile(“hdfs://...”)
errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(‘\t’)[2])

messages.cache()

messages.filter(lambda s: “foo” in s).count()
messages.filter(lambda s: “bar” in s).count()

am-Elw
“Block s ‘databrlcks

Full-text search of Wikipedia in <1 sec
(vs 20 sec for on-disk data)

Fault Tolerance

RDDs track lineage info to rebuild lost data

file.map(lambda rec: (rec.type, 1))
.reduceBykKey(lambda x, y: X + y)
.filter(lambda (type, count): count > 10)

map reduce filter

Input file

€databricks

Fault Tolerance

RDDs track lineage info to rebuild lost data

file.map(lambda rec: (rec.type, 1))
.reduceBykKey(lambda x, y: X + y)
.filter(lambda (type, count): count > 10)

map reduce filter

Input file

SIS G

EEST | .
oricks

Example: Logistic Regression

Running Time (s)

4000
3500
3000
2500
2000
1500
1000

500

110 s / iteration

/

Hadoop

Spark

\

first iteration 80 s

5 10 20
Number of Iterations

30 later iterations 1 s

€databricks

Spark in Scala and Java

// Scala:

val 1ines = sc.textFile(...)
lTines.filter(s => s.contains(“ERROR”)).count()

// Java:

JavaRDD<String> lines = sc.textFile(...);
Tines.filter(s -> s.contains(“ERROR”)).count();

€databricks

How General Is It?

Libraries Built on Spark

Spark MLIib
Sjpetle Sl Streaming machine

relational . 1 :
real-time earning

Spark Core

€databricks

Spark SQL

Represents tables as RDDs
Tables = Schema + Data

€databricks

Spark SQL

Represents tables as RDDs
Tables = Schema + Data = SchemaRDD

From Hive:

C = HiveContext(sc)
rows = c.sql(“select text, year from hivetable”)
rows.filter(lambda r: r.year > 2013).collect()

From JSON:

c.jsonFile(“tweets.json”).registerTempTable(“tweets™)
c.sql(“select text, user.name from tweets”)

tweets.json

{“text”: “hi”,
“user”: {
“name”: “matei”,
“9d”: 123
3}

$databricks

Spark Streaming

Time >

€databricks

Spark Streaming

Time

>

Represents streams as a series of RDDs over time

val spammers = sc.sequenceFile(“hdfs://spammers.seq”)

sc.twitterStream(...)
filter(t => t.text.contains(“QCon”))

.transform(tweets => tweets.map(t => (t.user, t)).join(spammers))
.print()

€databricks

MLlib

Vectors, Matrices

€databricks

MLlib

Vectors, Matrices = RDD[Vector]
Iterative computation

points = sc.textFile(“data.txt”) .map(parsePoint)
model = KMeans.train(points, 10)

model .predict(newPoint)

€databricks

GraphX

Represents graphs as RDDs of edges and vertices

[

User Friend
Data Graph

€databricks

GraphX

Represents graphs as RDDs of edges and vertices

TP B

User Friend Product Rec.
Data Graph Graph

Product
Ratings

€databricks

GraphX

Represents graphs as RDDs of edges and vertices

oy DS = [T

User Friend Product Rec. Prod.
Data Graph Graph Rec.

Product
Ratings

€databricks

Combining Processing Types

// Load data using SQL
val points = ctx.sql(
“select Tatitude, longitude from historic_tweets”)

// Train a machine learning model
val model = KMeans.train(points, 10)

// Apply 1t to a stream
sc.twitterStream(...)

.map(t => (model.closestCenter(t.location), 1))
.reduceBywindow(“5s”, _ + _)

€databricks

Composing Workloads

Separate systemes:

HDFS ﬁ HDFS HDFES

HDFES HDFES

S
© :
5 write read

read M write read

Spark:

HDFS :

read

€databricks

yreds
qeTydeis
noye

o @) @) o @) O o
(o) n < ™ N —

(uru) swr, easuodsay

u110ls

yredg

L o 1w o 1nw o umn O
o o o N -

(epou/s/aiN) ndybnory,

(waur) yredg
bistp) sreds

(wswr) eredwg

N

istp) efedwiy

Q

ATH

o ®) o o o o
o < ™ N i

(09s) w1, asuodsay

Performance vs Specialized Systems

ML
€databricks

Streaming

SQL

On-Disk Performance: Petabyte Sort

Spark beat last year’s Sort Benchmark winner, Hadoop,
by 3x using 10x fewer machines

2013 Record (Hadoop) = Spark 100 TB Spark 1 PB
Data Size 102.5TB 100 TB 1000TB
Time 72 min 23 min 234 min
Nodes 2100 206 190
Cores 50400 6592 6080
Rate/Node 0.67 GB/min 20.7 GB/min 22.5 GB/min

tinyurl.com/spark-sort $databricks

Overview

Why a unified engine?
Spark execution model
Why was Spark so general?

What's next

€databricks

Why was Spark so General?

In a world of growing data complexity, understanding
this can help us design new tools / pipelines

‘Two perspectives:
Expressiveness perspective
Systems perspective

€databricks

1. Expressiveness Perspective

Spark = MapReduce + fast data sharing

€databricks

1. Expressiveness Perspective

MapReduce can emulate any distributed system!

Local computation

All-to-all communication

One MR step

How to share data
quickly across steps”?

Spark: RDDs

How low is this latency?
Spark: ~100 ms

€databricks

2. Systems Perspective

Main bottlenecks in clusters are network and I/O

Any system that lets apps control these resources can
match speed of specialized ones
In Spark:

Users control data partitioning & caching

We implement the data structures and algorithms of
specialized systems within Spark records

€databricks

Examples

Spark SQL
A SchemaRDD holds records for each chunk of data
(multiple rows), with columnar compression

GraphX

GraphX represents graphs as an RDD of HashMaps so
that it can join quickly against each partition

€databricks

Result

Spark can leverage most of the latest innovations in
databases, graph processing, machine learning, ..

Users get a single API that composes very efficiently

More info: tinyurl.com/matei-thesis €databricks

Overview

Why a unified engine?
Spark execution model
Why was Spark so general?

What's next

€databricks

What's Next for Spark

While Spark has been around since 2009, many pieces
are just beginning

300 contributors, 2 whole libraries new this year

Big features in the works

€databricks

Spark 1.2 (Coming in Dec)

New machine learning pipelines API
Featurization & parameter search, similar to SciKit-Learn

Python API for Spark Streaming

Spark SQL pluggable data sources
Hive, JSON, Parquet, Cassandra, ORC, ..

Scala 2.11 support
gdatabricks

Beyond Hadoop

Interactive

Streaming

S»‘par‘ll(\z

Public
Clouds

Hadoop [Cassandra

Unified API across workloads, storage systems
and environments S

Learn More

Downloads and tutorials: spark.apache.org

Training: databricks.com/training (free videos)

Databricks Cloud: databricks.com/cloud

ik

Spa

€databricks

K K
Soark rk
%ummit East S@S’nmit 2015

2015

New York March 18-19, 2015 San Francisco June 15-17, 2015

www.spark-summit.org

€databricks

