


Unified Big Data Processing 
with Apache Spark 

Matei Zaharia 
@matei_zaharia 



What is Apache Spark? 

Fast & general engine for big data processing 
 
Generalizes MapReduce model to support more types 
of processing 
 
Most active open source project in big data 



About Databricks 

Founded by the creators of Spark in 2013 

Continues to drive open source Spark development, 
and offers a cloud service (Databricks Cloud) 

Partners to support Spark with Cloudera, MapR, 
Hortonworks, Datastax 

 

 



Spark Community 

M
ap

R
ed

uc
e 

YA
R

N
 

H
D

FS
 

St
or

m
 

Sp
ar

k 

0 

500 

1000 

1500 

2000 

M
ap

R
ed

uc
e 

YA
R

N
 

H
D

FS
 

St
or

m
 

Sp
ar

k 

0 

50000 

100000 

150000 

200000 

250000 

300000 

350000 

Commits Lines of Code Changed 
Activity in past 6 months 



Community Growth 

0 

25 

50 

75 

100 

2010 2011 2012 2013 2014 

Contributors per Month to Spark 

2-3x more activity than Hadoop, Storm, 
MongoDB, NumPy, D3, Julia, … 



Overview 

Why a unified engine? 
 
Spark execution model 
 
Why was Spark so general? 
 
What’s next 



History: Cluster Programming Models 

2004 



MapReduce 

A general engine for batch processing 



Beyond MapReduce 

MapReduce was great for batch processing, but users 
quickly needed to do more: 

>  More complex, multi-pass algorithms 
>  More interactive ad-hoc queries 
>  More real-time stream processing 

 
Result: many specialized systems for these workloads 



MapReduce 

Pregel 

Giraph 
Presto 

Storm 

Dremel 
Drill 

Impala 
S4 . . . 

Specialized systems 
for new workloads 

General batch 
processing 

Big Data Systems Today 



Problems with Specialized Systems 

More systems to manage, tune, deploy 
 
Can’t combine processing types in one application 

>  Even though many pipelines need to do this! 
>  E.g. load data with SQL, then run machine learning 

In many pipelines, data exchange between 
engines is the dominant cost! 



MapReduce 

Pregel 

Giraph 
Presto 

Storm 

Dremel 
Drill 

Impala 
S4 

Specialized systems 
for new workloads 

General batch 
processing 

Unified engine 

Big Data Systems Today 

? 
. . . 



Overview 

Why a unified engine? 
 
Spark execution model 
 
Why was Spark so general? 
 
What’s next 



Background 

Recall 3 workloads were issues for MapReduce: 
>  More complex, multi-pass algorithms 
>  More interactive ad-hoc queries 
>  More real-time stream processing 

 
While these look different, all 3 need one thing that 
MapReduce lacks: efficient data sharing 



Data Sharing in MapReduce 

iter. 1 iter. 2 .  .  . 
Input 

HDFS 
read 

HDFS 
write 

HDFS 
read 

HDFS 
write 

Input 

query 1 

query 2 

query 3 

result 1 

result 2 

result 3 

.  .  . 

HDFS 
read 

Slow due to data replication and disk I/O 



iter. 1 iter. 2 .  .  . 
Input 

What We’d Like 

Distributed 
memory 

Input 

query 1 

query 2 

query 3 

.  .  . 

one-time 
processing 

10-100× faster than network and disk 



Spark Model 

Resilient Distributed Datasets (RDDs) 
>  Collections of objects that can be stored in memory or 

disk across a cluster 
>  Built via parallel transformations (map, filter, …) 
>  Fault-tolerant without replication 



Example: Log Mining 
Load error messages from a log into memory, then 
interactively search for various patterns 
lines = spark.textFile(“hdfs://...”) 

errors = lines.filter(lambda s: s.startswith(“ERROR”)) 

messages = errors.map(lambda s: s.split(‘\t’)[2]) 

messages.cache() 

Block 1 

Block 2 

Block 3 

Worker 

Worker 

Worker 

Driver 

messages.filter(lambda s: “foo” in s).count() 

messages.filter(lambda s: “bar” in s).count() 

. . . 

tasks 

results 
Cache 1 

Cache 2 

Cache 3 

Base RDD Transformed RDD 

Action 

Full-text search of Wikipedia in <1 sec 
(vs 20 sec for on-disk data) 



file.map(lambda rec: (rec.type, 1)) 
    .reduceByKey(lambda x, y: x + y) 
    .filter(lambda (type, count): count > 10) 

Fault Tolerance 

filter reduce map 

In
pu

t f
ile

 

RDDs track lineage info to rebuild lost data 



filter reduce map 

In
pu

t f
ile

 
Fault Tolerance 

file.map(lambda rec: (rec.type, 1)) 
    .reduceByKey(lambda x, y: x + y) 
    .filter(lambda (type, count): count > 10) 

RDDs track lineage info to rebuild lost data 



0 
500 

1000 
1500 
2000 
2500 
3000 
3500 
4000 

1 5 10 20 30 

R
un

ni
ng

 T
im

e 
(s

) 

Number of Iterations 

Hadoop 
Spark 

110 s / iteration 

first iteration 80 s 
later iterations 1 s 

Example: Logistic Regression 



// Scala: 

val lines = sc.textFile(...) 
lines.filter(s => s.contains(“ERROR”)).count() 

 

// Java: 

JavaRDD<String> lines = sc.textFile(...); 
lines.filter(s -> s.contains(“ERROR”)).count(); 

Spark in Scala and Java 



How General Is It? 



Spark Core 

Spark 
Streaming 

real-time 

Spark SQL 
relational 

MLlib 
machine 
learning 

GraphX 
graph 

Libraries Built on Spark 



Represents tables as RDDs 
Tables = Schema + Data 

Spark SQL 



Represents tables as RDDs 
Tables = Schema + Data = SchemaRDD 

Spark SQL 

c = HiveContext(sc) 

rows = c.sql(“select text, year from hivetable”) 

rows.filter(lambda r: r.year > 2013).collect() 

From Hive: 

{“text”: “hi”,  
 “user”: { 
  “name”: “matei”, 
  “id”: 123 
}} 

c.jsonFile(“tweets.json”).registerTempTable(“tweets”) 

c.sql(“select text, user.name from tweets”) 

From JSON: 
tweets.json 



Time 
Input 

Spark Streaming 



RDD RDD RDD RDD RDD RDD 

Time 

Represents streams as a series of RDDs over time 

val spammers = sc.sequenceFile(“hdfs://spammers.seq”) 
 
sc.twitterStream(...) 
  .filter(t => t.text.contains(“QCon”)) 
  .transform(tweets => tweets.map(t => (t.user, t)).join(spammers)) 
  .print() 

Spark Streaming 



Vectors, Matrices 

MLlib 



Vectors, Matrices = RDD[Vector] 
Iterative computation 

MLlib 

points = sc.textFile(“data.txt”).map(parsePoint) 
model = KMeans.train(points, 10) 
 
model.predict(newPoint) 
 



Represents graphs as RDDs of edges and vertices 

GraphX 



Represents graphs as RDDs of edges and vertices 

GraphX 



Represents graphs as RDDs of edges and vertices 

GraphX 



// Load data using SQL 
val points = ctx.sql( 
  “select latitude, longitude from historic_tweets”) 

 
// Train a machine learning model 
val model = KMeans.train(points, 10) 

 
// Apply it to a stream 
sc.twitterStream(...) 
  .map(t => (model.closestCenter(t.location), 1)) 
  .reduceByWindow(“5s”, _ + _) 

Combining Processing Types 



Composing Workloads 

Separate systems: 
 

. . . 
HDFS 
read 

HDFS 
write ET

L HDFS 
read 

HDFS 
write tr

ai
n HDFS 

read 
HDFS 
write qu

er
y 

HDFS 
write 

HDFS 
read ET

L 

tr
ai

n 

qu
er

y 

Spark: 

 



H
iv

e
Im

pa
la

 (d
is

k)
 

Im
pa

la
 (m

em
) 

Sp
ar

k 
(d

is
k)

 
Sp

ar
k 

(m
em

) 

0 

10 

20 

30 

40 

50 

R
es

po
ns

e 
Ti

m
e 

(s
ec

) 

SQL 

M
ah

ou
t 

G
ra

ph
La

b 
Sp

ar
k 

0 

10 

20 

30 

40 

50 

60 

R
es

po
ns

e 
Ti

m
e 

(m
in

) 

ML 

Performance vs Specialized Systems 

St
or

m
 

Sp
ar

k 

0 

5 

10 

15 

20 

25 

30 

35 

Th
ro

ug
hp

ut
 (M

B
/s

/n
od

e)
 

Streaming 



On-Disk Performance: Petabyte Sort 

Spark beat last year’s Sort Benchmark winner, Hadoop, 
by 3× using 10× fewer machines 

2013 Record (Hadoop) Spark 100 TB Spark 1 PB 

Data Size 102.5 TB 100 TB 1000 TB 

Time 72 min 23 min 234 min 

Nodes 2100 206 190 

Cores 50400 6592 6080 

Rate/Node 0.67 GB/min 20.7 GB/min 22.5 GB/min 

tinyurl.com/spark-sort  



Overview 
Why a unified engine? 
 
Spark execution model 
 
Why was Spark so general? 
 
What’s next 



Why was Spark so General? 
In a world of growing data complexity, understanding 
this can help us design new tools / pipelines 
 
Two perspectives: 

>  Expressiveness perspective 
>  Systems perspective 

 
 



1. Expressiveness Perspective 
Spark ≈ MapReduce + fast data sharing 



1. Expressiveness Perspective 

How to share data!
quickly across steps?

Local computation
All-to-all communication One MR step

…
How low is this latency?

Spark: RDDs

Spark: ~100 ms

MapReduce can emulate any distributed system! 



2. Systems Perspective 

Main bottlenecks in clusters are network and I/O 

Any system that lets apps control these resources can 
match speed of specialized ones 

In Spark: 
>  Users control data partitioning & caching 
>  We implement the data structures and algorithms of 

specialized systems within Spark records 



Examples 
Spark SQL 

>  A SchemaRDD holds records for each chunk of data 
(multiple rows), with columnar compression 

GraphX 
>  GraphX represents graphs as an RDD of HashMaps so 

that it can join quickly against each partition 
 



Result 
Spark can leverage most of the latest innovations in 
databases, graph processing, machine learning, … 
 
Users get a single API that composes very efficiently 

More info: tinyurl.com/matei-thesis 



Overview 
Why a unified engine? 
 
Spark execution model 
 
Why was Spark so general? 
 
What’s next 



What’s Next for Spark 
While Spark has been around since 2009, many pieces 
are just beginning 
 
300 contributors, 2 whole libraries new this year 
 
Big features in the works 



Spark 1.2 (Coming in Dec) 
New machine learning pipelines API 

>  Featurization & parameter search, similar to SciKit-Learn 

Python API for Spark Streaming 

Spark SQL pluggable data sources 
>  Hive, JSON, Parquet, Cassandra, ORC, … 

Scala 2.11 support 



Beyond Hadoop 

Batch Interactive Streaming 

Hadoop Cassandra Mesos 

…

…
Public 
Clouds 

Your 
application 

here 

Unified API across workloads, storage systems 
and environments 



Learn More 
Downloads and tutorials: spark.apache.org  

Training: databricks.com/training (free videos) 

Databricks Cloud: databricks.com/cloud   



www.spark-summit.org 




