
How we learned to stop worrying and start deploying
The Netflix API service

Sangeeta Narayanan
@sangeetan

http://www.linkedin.com/in/sangeetanarayanan
http://bit.ly/1wq2kkN

http://www.linkedin.com/in/sangeetanarayanan
http://bit.ly/1wq2kkN

Netflix started out as a DVD rental by mail service in the US.

Introduced on-demand video streaming over the internet in 2007

Global Streaming for Movies and TV Shows

Started expanding the streaming service into international markets a few years after launching in the US

High Quality Original Content

Late 2011/2012 marked a major new strategic focus with foray into the world of original programming

Shows like HoC & Orange have been received with high acclaim; as evidenced by recent Emmy wins. Strategy is to expand internationally and pursue high
quality content to drive engagement and acquisition.

Over 50 Million Subscribers

Over 40 Countries

Global expansion, high quality originals and personalized content have fueled rapid subscriber growth.

> 34% of Peak Downstream Traffic in North
America

Over 2 billion streaming hours a month

Netflix now accounts for over 1/3rd of downstream internet traffic in NA at peak. This number has been in the news a lot lately!

Our members can choose to enjoy our service on over 1000 device types.

Personalized User Experience

Edge Engineering operates the services that are the entry point to the personalized discovery and streaming experience for our members.

This is an extremely high level view of how the Netflix Discovery experience is rendered. API is the internet facing service that all devices connect to to
provide the user experience. The API in turn consumes data from several middle-tier services, applies business logic on top of it as needed and provides
an abstraction layer for devices to interact with. The API in effect, acts as a broker of metadata between services and devices. Put another way, almost all
product functionality flows through the API.

http://goo.gl/VhokZV

Role of API
Enable rapid innovation

Conduit for metadata between Devices and
Services

Implements business logic

Scale with business growth

Maintain resiliency

http://goo.gl/VhokZV

Going back in time…
http://bit.ly/1yOWEjr

Looking at the motivations behind our move towards CD

http://bit.ly/1yOWEjr

PM: When can I get my feature?

Us: 2 -4 weeks

PM: When can I get my feature?

Us: 2 -4 weeks - ish…

PM: When can I get my feature?

Us: 2 -4 weeks - ish…

PM: When can I get my feature?

IF all goes well…

We were lacking confidence in our delivery process

2 week release cycle

Not Quite!

API was becoming a bottleneck where functionality would get delayed.

!

Stop being the bottleneck!

http://bit.ly/1zmYbAy

We had a simple goal.

http://bit.ly/1zmYbAy

What’s not
working?

Heavy weight Code Management

3 long lived branches with code in varying states of release readiness. Lots of manual tracking, merging and co-ordination.

Slow, non-repeatable builds

Constantly Changing Dependencies

Dependency management was hard and contributed to slow, unpredictable builds.

Slow, unreliable tests

Low coverage

Manual on-device testing

Lots of manual testing - on device too!

Manual
deployments

Push Lead!

Life of push on-call was not fun.

Requirements for new system
On-Demand, Rapid Feature Delivery

Intuitive and painless

Easy recovery from errors

Insight and Communication

Balance between Agility & Stability

Rele
as

e

Rele
as

e

Rele
as

e

Patc
h

Patc
h
Patc

h

2 week Releases + Ad-Hoc Patches
http://bit.ly/1E6a9yn

http://bit.ly/1E6a9yn

MR MR

IR IR IR IR

3 week Major Releases + Weekly Incremental Releases

Major releases (MR) every three weeks - dates shared outside the team
Weekly Incremental releases (IR) in between; two IRs per MR cycle

Automate SCM Tasks

Eliminated Code Freeze. Engineers were responsible for managing their commits.
Automated code merge tasks

Automated Dependency Validation

Dependency Management was creating a lot of churn in our cycle. We built a separate pipeline that resolved the dependency tree, validated it by running
a series of tests and then committed the resolved graph to source. All development is based off that known good set of dependencies until the next run
of that pipeline.

Test Strategy

Increasing
confidence

Worked out a test strategy so effort could be applied at the appropriate level of testing. The idea was to build a series of tests that acted as gates and as
code made its way up the pyramid, our confidence in it would increase.

Test Runtimes 60%
No False Positives

Eliminating non-determinism and shortening runtime is a fundamental requirement. The point to note is that this is an ongoing process; you need to stay
on top of this!

Improved Result Reporting

In keeping with the goal of making the system simple and intuitive, we added detailed insights into test results so anyone could quickly root cause failures
and act on them.

Automated Deployments

Internal Environments

Using Asgard API

Connected to builds

Driven from CI Server

By now, we were operating multiple internal environments and the company was getting ready to bring a new AWS region online. We automated
deployments to all those environments.

Pipelines

And now, we had ourselves a pipeline! In fact, we had 3 - one for each long lived branch.

• Multiple
deployments/day

!

• Multiple internal
environments

!

• Multiple AWS
regions

http://bit.ly/13qrIfw

A big milestone for the team.

http://bit.ly/13qrIfw

Team Cohesion
!

• Shared ownership - no silos
• Increased partner satisfaction
• Greater productivity

Equally, if not more important was the change in the team dynamic. There was increased cohesion as people got comfortable with the self-service model
and the idea of sharing ownership.

http://bit.ly/1xJQqjD

Aiming Higher

http://bit.ly/1xJQqjD

Faster, Better, All the way!

Shorter Feedback Loop

Increased Confidence

Richer Insight & Communication

Build

Bake

Test

Deploy

Build

BakeTest

Deploy

Increase velocity: Developer workflow
NEtflix BUild LAnguage plugin for Gradle that provides specific functionality for the Netflix environment

!

Branching Strategy

Modeled after github-flow
!

Automated Pull Request Processing
!

Automated Patch Branching

http://scottchacon.com/2011/08/31/github-flow.html

Single long-lived branch
Always deploy-able

Feature branches

More, Better, Faster & to Prod

Shorter Feedback Loop

Increased Confidence

Richer Insight & Communication

Automated Canary
Analysis

Aggregate Health Score

>1500 metrics

Configurable

Multiple regions

Old$Code$(Baseline)$ New$Code$(Canary)$

~1%$Traffic$

Automated Canary Analysis is the arguably the most important tool in our toolkit. We started out small, comparing simple metrics. Then expanded it to
make it a system that generates a health score based on comparisons across 1000s of metrics.

Canary reports are generated at periodic intervals and emailed to the team. They are also available off the dashboard. The report shows an overall confidence score of
the readiness of that build. This one didn’t do very well.

Details of the problematic metrics that contributed to the poor canary score.

Developer Canaries
(dynamically provisioned)

Dependency Validation Canary

Not intended for deployment

Not deployable; failed tests

Deployed

Hands Free Production Deployments

http://bit.ly/1wQ8fPQ

http://bit.ly/1wQ8fPQ

Red/Black Deployments

Old Code

Production Traffic

Old Code New Code

Production Traffic

Old Code New Code

Production Traffic

We can see an outage in real time - the no. of 5XX errors & latency spiked during the incident. This data is being streamed by hundreds of servers, aggregated using Turbine and streamed to the dashboard.

Feature Rollback

Dynamic configuration using Archaius allows features to be toggled dynamically. If newly introduced feature proves to be problematic, turning it off is an easy way to
restore system health. Archaius is a set of config mgmt APIs based on Apache Common Config lib. This allows configuration changes to be propagated in a matter of
minutes; at runtime without requiring app downtime. Configuration properties are multi-dimensional and context aware so their scope can be applied to a specific
context e.g. env = Test/Staging/Production or region=us-east/us-west/eu-west etc.

Full Rollback

In the event that a newly deployed version of the software proves to be problematic, the system can be rolled back to the previous version. The old cluster is kept alive
for a few hours so the automation knows what to roll back to. Because of our extensive use of autoscaling, provisioning the clusters accurately is tricky; and having to do
it manually across three regions would make rollbacks slow and leave them to prone to error. Even though rollbacks are rare, the cost of getting it wrong is too high.

Old Code New Code

Re-enable
traffic

Production Traffic

Old Code New Code

Production Traffic

More, Better, Faster & to Prod

Shorter Feedback Loop

Increased Confidence

Richer Insight & Communication

Dashboard shows the status of current and upcoming deployments, builds and associated artifacts. Diff reports for source and libraries help identify
contents of the build.

Different views of the data are available. This is a build that passed through all the stages successfully; including the canary.

Committers and On-Calls are notified when a build is scheduled for deployment so they can be available if needed.

API Server Deployment Velocity
#Deployments
#Rollbacks

Deployments & Rollbacks/week
since Oct 2012

The current state is that we deploy ~3 times/week on average. Additionally, deployments can be triggered on demand.

Take-aways

Build Agility into Architecture

Embrace Change; Don’t Fight it!

Failure is inevitable

Insight is key

• Examples of building agility - cloud-native, loosely coupled microservices, distributed data stores, dynamic configuration using Archaius provides
ability to effect changes in the behavior of our deployed services dynamically

• Embrace change - dependencies will change; everyone is evolving and moving fast. Best to get ahead of it rather than try and fight it
• Failure is inevitable; re-assess balance of investment between preventing failure and rapid recovery + impact mitigation
• Insight - not just operational(that’s a given!), but engineering too. It becomes key when responsibility is shared.

What’s Next

“Tiered” Canary Analysis

Failure Injection Testing

Throughput Trending

http://goo.gl/zjiV6W

http://goo.gl/zjiV6W

Culture

http://goo.gl/7l7xkM

Good architectural practices, automation & tooling and deep insight into our systems allow us to operate resilient systems and go fast at scale. But the key piece that
brings it all together and completes the picture is our culture.

http://goo.gl/7l7xkM

Freedom and Responsibility

Culture is based on the principles of Freedom and Responsibility.

Employees have the freedom to make decisions and act on them as it pertains to their daily activities. The counterbalance is the responsibility they assume for the
implications of their actions. Management’s job is to set the appropriate context so employees have all the information they need to make the right decisions and
judgement calls. This fosters a blameless culture where people feel empowered to take risks.

http://netflix.github.io/
http://techblog.netflix.com

Visit our github site and techblog for information and details about interesting topics related to distributed systems,

http://netflix.github.io/
http://techblog.netflix.com

How we learned to stop worrying and start deploying
The Netflix API service

Sangeeta Narayanan
@sangeetan

http://www.linkedin.com/in/sangeetanarayanan
http://bit.ly/1wq2kkN

Thank You!

http://www.linkedin.com/in/sangeetanarayanan
http://bit.ly/1wq2kkN

