

CAITIE

/

A

" . : s " 4’;. . , - 4 ’ '-, Sy ‘ .) . ' Lol
’ # \ - ' . 2 e - ," ; I - : Ty \:. . -y
> ! e » 4 -
LN & L A, R LI SO & PRy A e : 5 DL P Sl S T
e A Wt L NG 5 ' J 7 .' FaC S 1Y » e - ’ iy :' : R4 v,
; ' {"ma - .. y e :‘ - ” - v . .v'. ' i l', ‘.,- -.("[. !] Ma ot eAdl) : 3 .l
. il o j.u.~ ; , - "; 4 P, 202, ‘.
' P 2 : v ALDL LN gy, YIS A
SRR S e e, WO S ey y b R AT Sy T AL
ity ‘ N ' ~Et o) APV e e 1 '-:',' s
: S SRSl ' ; . .55
LI~ - — [, & JORNT e lhp o rs ; " -
‘ - by Tty J .
- . “ ' j ; . ' ; P ’
g

4
My

......

&

DISTRIBUTED

§, S

IC
UEM
CA

A

EVENTUAL

/ £

Managing Brewer's
Update Contlicts conjecture &

Detection of
Mutudl

. IN Bayou, © the feasibllity of
Inconsistency Weakly consistent,
n Distributed Connected available,

Systems Replicated oartition-tolerant

Storage System web services

* *
Conftlict-tree Feral Concurrency
replicated Data Control: An Empirical

Types Investigation of

Modern Application
INntegrity

AP
PL
|
CATIONS
Be
ore

Jee
service
T
o
-
-

APPLICATIONS 5efone

—
l
Wi

ITI

APPLICATIONS Now

T
ITI

Ty [

AVAILABILITY

Detection of Mutual Inconsistency in
Distributed Systems

D.STOTT PARKER, JR., GERALD J. POPEK, GERARD RUDISIN, ALLEN STOUGHTON,
| BRUCE J. WALKER, EVELYN WALTON, JOHANNA M. CHOW,

1963

DAVID EDWARDS, STEPHEN KISER, AND CHARLES KLINE

Abstract—Many distributed systems are now being developed to
provnde users with convenient access to data via some kind of com-
munications network. In many cases it is desirable to keep the system
functioning even when it is partitioned by network failures. A serious
problem in this context is how one can support redundant copies of
resources such as files (for the sake of reliability) while simultaneously
monitoring their mutual consistency (the equality of multiple copies).
This is difficult since network failures can lead to inconsistency, and
disrupt attempts at maintaining consistency. In fact, even the detection
of inconsistent copies is a nontrivial problem. Naive methods either
1) compare the multiple copies entirely or 2) perform simple tests
which will diagnose some consistent copies as inconsistent. Here a new
approach, involving version vectors and origin points, is presented and
shown to detect smgle ﬁle, multiple copy mutual inconsistency effec-
tively. The approach has been used in the design of LOCUS, a local
network operating system at UCLA.

Index Terms-— Availability, distributed systems, mutual consistency,
network failures, network partntlonmg, replicated data.

multiple copies of a file exist, the system must ensure the
mutual consistency of these copies: when one copy of the file
is modified, all must be modified correspondlngly before an
independent access can take place.

Much has been written about the problem of maintaining
consistency in distributed systems, ranging from internal
consistency methods (ways to keep a single copy of a resource
looking consistent to multiple processes attempting to access it
concurrently) to various ingenious updating algorithms which
ensure mutual consistency [1], [2], [6], [8], [16], etc. We
concern ourselves here with mutual consistency in the face of
network partitioning, i.e., the situation where various sites in
the network cannot communicate with each other for some
length of time due to network failures or site crashes. This is a
very real problem in most networks. For example, even in the
Ethernet [10] gateways can be inoperative for s1gn1ﬁcant

CHIVLT ¥ Il' .I 1€ 1€ ST (1€

ORIGIN
POINTS
&
VERSION
VECTORS

e <A:0, 6:0. C:0, D:0>
a <A:0, B:0, C:0, D:0>

8
Q
&)
A =}
3 = A
Q oi A S
o Y, Rl
= f.mculan
= S$-5
m SEm 2
01 ..m.ﬁ
SSVE =

end of each partition.

Fig. 2. Partition graph G(f) for f with version vectors effective at the

® +

a A
= a
& e
S O
& S
el &=
Y,]

KEY Take amays

We need Availability

Gives us @ mechanism
for efficient conflict '
detection

Teaches us that
networks are NOT
reliable

Managing Update Conflicts in Bayou,
a Weakly Connected Replicated Storage System

1995

Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers,

Mike J. Spreitzer and Carl H. Hauser

Computer Science Laboratory

Xerox Palo Alto Research Center
Palo Alto, California 94304 U.S.A.

Abstract

Bayou is a replicated, weakly consistent storage system
designed for a mobile computing environment that includes porta-
ble machines with less than ideal network connectivity. To maxi-
mize availability, users can read and write any accessible replica.
Bayou's design has focused on supporting application-specific
mechanisms to detect and resolve the update conflicts that natu-
rally arise in such a system, ensuring that replicas move towards
eventual consistency, and defining a protocol by which the resolu-
tion of update conflicts stabilizes. It includes novel methods for
conflict detection, called dependency checks, and per-write con-
flict resolution based on client-provided merge procedures. To
guarantee eventual consistency, Bayou servers must be able to roll-
back the effects of previously executed writes and redo them

“connectedness” are possible. Groups of computers may be parti-
tioned away from the rest of the system yet remain connected to
each other. Supporting disconnected workgroups is a central goal
of the Bayou system. By relying only on pair-wise communication
in the normal mode of operation, the Bayou design copes with
arbitrary network connectivity.

A weak connectivity networking model can be accommodated
only with weakly consistent, replicated data. Replication is
required since a single storage site may not be reachable from
mobile clients or within disconnected workgroups. Weak consis-
tency is desired since any replication scheme providing one copy
serializability [6], such as requiring clients to access a quorum of
replicas or to acquire exclusive locks on data that they wish to
update, yields unacceptably low write availability in partitioned

b NOIK # 1CNC CdSO L DAV AC10) 1) 4 111OCIE 1 W1 b

BAYOU Summary

System designhed tor weak connectivity

Fventual consistency via application-
defined dependency checks and
merge procedures

“Applications must be
aware of and integrally

involved in conflict

detection and resolution”

] ;)
. o Al " i. .
. ‘i "; 4 -'h
I . AT R
! -5' ~\ ""N:'-
'f e 14 e}
y . .N'. . w , .
‘e : v "'{’-‘ ¥ .l‘
V. : Y "')'..'q elagat .
A SRR S o
s (T
e N & i X \'-':\4' }
" N : $.- .
¢ - e R '
™

I TR |
ey AN L '
..‘F / l‘!}",:":;! v
t d"" 0.'I',

Ji nn,cq,':_vv.u.\.

& anayl. & ﬁﬂwu@m

"Humans wt
- rather deal
N/ the occasic
vunresolvabl
conflict tha
INCur the
adverse Img
on availabill

Brewer’s Conjecture and the Feasibility ot
Consistent, Available, Partition-Tolerant Web

Services
Seth Gilbert* Nancy Lynch*
Abstract

When designing distributed web services, there are three
properties that are commonly desired: consistency, avail-
ability, and partition tolerance. It is impossible to achieve
all three. In this note, we prove this conjecture in the asyn-
chronous network model, and then discuss solutions to this
dilemma in the partially synchronous model.

— - 1 -

%%

%_% PARTITION TOLERANCE &.°

CONSISTENCY AVAILABILITY

CONSISTENCY m c» corsinc
Mﬂ M/ AP Consistency

Linearizable

|

Sequential

|

Causal \
5009 / Write from read
Pipelined random

access memory \
l B

Read your write Monotonic read “"Monotonic write

Conflict-free Replicated Data Types *

Marc Shapiro, INRIA & LIP6, Paris, France
Nuno P reguiga,, CITI, Universidade Nova de Lisboa, Portugal
Carlos Baquero, Universidade do Minho, Portugal
Marek Z&WiI'Ski, INRIA & UPMC, Paris, France

Théme COM — Systemes communicants
Projet Regal

Rapport de recherche n° 7687 — Juillet 2011 — 18 pages

Abstract: Replicating data under Eventual Consistency (EC) allows any replica to accept
updates without remote synchronisation. This ensures performance and scalability in large-
scale distributed systems (e.g., clouds). However, published EC approaches are ad-hoc and
error-prone. Under a formal Strong Eventual Consistency (SEC) model, we study sufficient
conditions for convergence. A data type that satisfies these conditions is called a Conflict-
free Replicated Data Type (CRDT). Replicas of any CRDT are guaranteed to converge in
a self-stabilising manner, despite any number of failures. This paper formalises two popular
approaches (state- and operation-based) and their relevant sufficient conditions. We study a
number of useful CRDTs, such as sets with clean semantics, supporting both add and remowve
operations, and consider in depth the more complex Graph data type. CRDT types can be
composed to develop large-scale distributed applications, and have interesting theoretical
properties.

Strong Eventual Consistency - apply
updates immediately, no contflicts, or
rollloacks

Vi

Mathematical properties & epidemic
algorithms / gossip profocols

(1, {a, ¢}, (c})

I (1, {a, ¢}, (c})

add(1) u" remove() ,' .
(1, (c), ()) (1, {c), {c}) (1, (a, ¢}, {c})

* Stolen from Chris Meiklejohn

RESOLVING Conflicts

Applying rollbacks is
NAra

Restrict operation
space to get provably
convergent systems

2015

Feral Concurrency Control:
An Empirical Investigation of Modern Application Integrity

Peter Bailis, Alan Fekete™, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein, lon Stoica
UC Berkeley and TUniversity of Sydney

ABSTRACT

The rise of data-intensive “Web 2.0 Internet services has led to a
range of popular new programming frameworks that collectively
embody the latest incarnation of the vision of Object-Relational
Mapping (ORM) systems, albeit at unprecedented scale. In this
work, we empirically investigate modern ORM-backed applica-
tions’ use and disuse of database concurrency control mechanisms.
Specifically, we focus our study on the common use of feral, or
application-level, mechanisms for maintaining database integrity,
which, across a range of ORM systems, often take the form of declar-
ative correctness criteria, or invariants. We quantitatively analyze
the use of these mechanisms in a range of open source applications
written using the Ruby on Rails ORM and find that feral invariants
are the most popular means of ensuring integrity (and, by usage, are
over 37 times more popular than transactions). We evaluate which
of these feral invariants actually ensure integrity (by usage, up to
86.9%) and which—due to concurrency errors and lack of database
support—may lead to data corruption (the remainder), which we
experimentally quantify. In light of these findings, we present rec-
ommendations for database system designers for better supporting

Rails is interesting for at least two reasons. First, it continues to be a
popular means of developing responsive web application front-end
and business logic, with an active open source community and user
base. Rails recently celebrated its tenth anniversary and enjoys
considerable commercial interest, both in terms of deployment and
the availability of hosted “cloud” environments such as Heroku.
Thus, Rails programmers represent a large class of consumers of
database technology. Second, and perhaps more importantly, Rails
is “opinionated software” [41]. That is, Rails embodies the strong
personal convictions of its developer community, and, in particular,
David Heinemeier Hansson (known as DHH), its creator. Rails is
particularly opinionated towards the database systems that it tasks
with data storage. To quote DHH:

“I don’t want my database to be clever! ...I consider
stored procedures and constraints vile and reckless de-
stroyers of coherence. No, Mr. Database, you can not
have my business logic. Your procedural ambitions
will bear no fruit and you’ll have to pry that logic from

my dead, cold object-oriented hands . ..I want a single
laver of clevernece Mv domain model ”? [55]

FERAL MECHANISMS fjor keeping DB infegnity

Application-level mechanisms

Analyzed 6/ open source Ruby on
Rails Applications

Unsafe > 13% of the time
(unigueness & foreign key constraint violations)

CONCURRENCY CONTROL s harnd!

Avallabillity I1s Important to application
developers

Home-rolling your own concurrency
conirol or consensus algorithm is very
hard and difficult to get correct!

CRAP'BWESTILL
HAVETOSHIPTHIS
SYSTEM!

/ » ¢

ol
Ty
4 *
SHIPTHIS

¥ PILEOFBURNING
TIRES? '

CRAP'BWESTILL
HAVETOSHIPTHIS
SYSTEM!

SYSTEM

P © 0 06 © 0O 0 0 0O 0O 0 0O 0O 0 0 06 0O 0 0 O 0 0O 0 0 0 0O 0 0 0 06 0 0 0 0 0 0 0 0 0 0 0 06 0 0 0 0 06 0 0 0 0 0 0 0 o
© 0 0 0 C % 0 0 %9 %595 %5 %% %% YYYYYYYYY Y Y'Y YY Y Y'Y YY" Y'Y YY" YY" YY" YY" YY" Y YY" YY" Y YY" YY" YY" YY" " NY" YN NN N .
P © © © 0 0 © 0 0 0 0 0 0 © 0 0 0 0 0 0 0 0 0 0 0 0 0 0O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0 o0 o

| LB . * _.
N B
) ’ .»T‘ ..“.
p) ‘ 7 1 ’
WH ' 6@0 nWeé v / 4. TN
, - -~ - "-\ | \\'“ '

We verlfy/’res’r -
. fo gain
. confidence
- that our system
IS doing the
- right thing now
. & later

Formal Methods |-

HUMAN ASSISTED PROOFS TOP-DOWN

SAFETY CRITICAL (TLA+, COQ, ISABELLE) FAULT INJECTORS, INPUT GENERATORS

MODEL CHECKING

BOTTOM-UP
PROPERTIES + TRANSITIONS (SPIN, TLA+) LINEAGE DRIVEN FAULT INJECTORS

LIGHTWEIGHT FM WHITE / BLACK BOX

BEST OF BOTH WORLDS (ALLOY, SAT) WE KNOW (OR NOT) ABOUT THE SYSTEM

Formal Methods |-

High iInvestment and high
reward

Considered slow & hard to
use so we target small
components / simplified
versions of a system

Used In safety-critical
domains

Testing E

Pay-as-you-go & gradually
INCrease confidence

Sacrifice rigor (less
certainty) for something
more reasonable

Efficacy challenged by
large state space

VERIFICATION YUhy s0 hard?

SAFETY

Nothing bad happens

Reason about 2 system
states. If steps between
them preserve our
INnvariants then we are
proven safe

Something good
eventually happens

Reason about infinite
series of system states

Much harder to verity
than safety properties

TESTING Why 50 hard?

Vast state space

Timing & Failures

Components tested In
Isolation also heed to
oe tested together

Leslie Lamport:
The Specification Language TLA™

This is an addendum to a chapter by Stephan Merz in the book
Logics of Specification Languages by Dines Bjgrner and Martin C.
Henson (Springer, 2008). It appeared in that book as part of a
“reviews” chapter.

Stephan Merz describes the TLA logic in great detail and provides about as

good a description of TLA™ and how it can be used as is possible in a single
chapter. Here, I give a historical account of how I developed TLA and TLA

that explains some of the design choices, and I briefly discuss how TLA ™ is used
in practice.

Whence TLA

The logic TLA adds three things to the very simple temporal logic introduced
into computer science by Pnueli [4]:

TLA: Is a combination of tfemporal logic with a logic of
actions. Right logic to express liveness properties with
oredicates about a system’s current & future state

TLA+: is a formal specification language used to
design, model, document, and verity concurrent/
distributed systems. It verifies all traces exhaustively

Use of Formal Methods at Amazon Web Services

Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, Michael Deardeuff
Amazon.com

29" September, 2014 2 01 4

Since 2011, engineers at Amazon Web Services (AWS) have been using formal specification a
checking to help solve difficult design problems in critical systems. This paper describes our motivatic
and experience, what has worked well in our problem domain, and what has not. When discussing
personal experiences we refer to authors by their initials.

At AWS we strive to build services that are simple for customers to use. That external simplicity is built
on a hidden substrate of complex distributed systems. Such complex internals are required to achieve
high availability while running on cost-efficient infrastructure, and also to cope with relentless rapid

=] =ss growth. As an example of this growth; in 2006 we launched S3, our Simple Storage Service. In
M] ars after launch, S3 grew to store 1 trillion objects '*. Less than a year later it had grown to 2

objects, and was regularly handling 1.1 million requests per second ?'.

FM

TLA+AT AMAZON Tckeasuasys

Precise specification of systems in TLA+

Found subtle bugs & FMs providead
confidence to make aggressive optimizations
w/0 sacrificing system correctness

Use formal specification to teach new
engineers

TLA+AT AMAZON Resvclis

Applying TLA+ to some of our more complex systems

amazon

webservices™

System

S3

Components

Fault-tolerant low-level
network algorithm

Line count
(excl. comments)

Benefit

804
PlusCal

Found 2 bugs. Found further bugs
in proposed optimizations.

Background redistribution of
data

645
PlusCal

Found 1 bug, and found a bug in
the first proposed fix.

DynamoDB

Replication & group-
membership system

939
TLA+

Found 3 bugs, some requiring
traces of 35 steps

EBS

Volume management

102 PlusCal

Found 3 bugs.

Internal
distributed
lock manager

Lock-free data structure

223
PlusCal

Improved confidence. Failed to
find a liveness bug as we did not
check liveness.

Fault tolerant replication and
reconfiguration algorithm

318
TLA+

Found 1 bug. Verified an
aggressive optimization.

usenix

»
\k
D -
4 THE ADVANCED
| COMPUTING SYSTEMS

ASSOCIATION

Simple Testing Can Prevent Most Critical Failures:
An Analysis of Production Failures in Distributed
Data-Intensive Systems

' Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao,
? Yongle Zhang, Pranay U. Jain, and Michael Stumm, University of Toronto
TEST

https://www.usenix.org/conference/osdil4/technical-sessions/presentation/yuan

Faillures require only 3
nhodes to reproduce.
Multiple iInputs needed

(~ 3) In the correct order

Used error logs to diaghose & ..
reproduce failures . Complex sequences of
. events but 74% errors

Sotftware % of tailures reproducible by unit test * el
Casanda a0 B found are deterministic

HBase 85% (35/41) h, .
HDFS 82% (34/41) - 77% failures can be

MapReduce 7% (33/38) : reproduced by a unit test

Redis 38% (22/38)

Total 77% (153/198)

Faulty error handling
code culprit

Aspirator (their static checker) found 121 new
bugs & 379 bad practices!

Lineage-driven Fault Injection

Peter Alvaro
UC Berkeley

palvaro@cs.berkeley.edu

ABSTRACT

Failure is always an option; in large-scale data management sys-
tems, it 1s practically a certainty. Fault-tolerant protocols and com-
ponents are notoriously difficult to implement and debug. Worse
still, choosing existing fault-tolerance mechanisms and integrating
them correctly into complex systems remains an art form, and pro-
grammers have few tools to assist them.

We propose a novel approach for discovering bugs in fault-tolerant
data management systems: lineage-driven fault injection. A lineage-

driven fault injector reasons backwards from correct system out-
comes to determine whether failures in the execution could have
prevented the outcome. We present MOLLY, a prototype of lineage-
driven fault injection that exploits a novel combination of data lin-
eage techniques from the database literature and state-of-the-art
satisfiability testing. If fault-tolerance bugs exist for a particular
configuration, MOLLY finds them rapidly, in many cases using an
order of magnitude fewer executions than random fault injection.
Otherwise, MOLLY certifies that the code is bug-free for that con-
figuration.

Joshua Rosen
UC Berkeley

rosenville@gmail.com

Joseph M. Hellerstein
UC Berkeley

enriching new system architectures with well-understood fault tol-
erance mechanisms and henceforth assuming that failures will not
affect system outcomes. Unfortunately, fault-tolerance is a global
property of entire systems, and guarantees about the behavior of
individual components do not necessarily hold under composition.
It 1s difficult to design and reason about the fault-tolerance of indi-
vidual components, and often equally difficult to assemble a fault-
tolerant system even when given fault-tolerant components, as wit-
nessed by recent data management system failures [16, 57] and
bugs [36,49].

Top-down testing approaches—which perturb and observe the
behavior of complex systems—are an attractive alternative to veri-
fication of individual components. Fault injection [1,26,36,44, 59]
i1s the dominant top-down approach in the software engineering
and dependability communities. With minimal programmer in-
vestment, fault injection can quickly identify shallow bugs caused
by a small number of independent faults. Unfortunately, fault in-
jection is poorly suited to discovering rare counterexamples in-
volving complex combinations of multiple instances and types of
faults (e.g., a network partition followed by a crash failure). Ap-

hellerstein@cs. berkeIeY* 2@?@

: : M MOLLY runs and observes
MOLLY %@W execution, & picks a fault
for the next execution.
Program Is ran again and

results are observed

Reasons backwards from
COIrect system outrcomes

1. Program M . . .

2. Topology & determines it a failure

. :Spsuef‘tions evaluator analysis :
could have prevented It

Verifier
Programmer Program outpu Mp\ly or.lly injecfs the .
+lineage failures it can prove might

affect an outcome

failure scenarios

CNF formula

"Presents a middle ground
between pragmatism and
formalism, dictafed by the
Importance of veritying fault
folerance in spife of the
complexity of the space of
faults”

IronFleet: Proving Practical Distributed Systems Correct

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, |
Bryan Parno, Michael L. Roberts, Srinath Setty, Brian Zill 2

Microsoft Research

Abstract

Distributed systems are notorious for harboring subtle bugs.
Verification can, in principle, eliminate these bugs a priori,
but verification has historically been difficult to apply at full-
program scale, much less distributed-system scale.

We describe a methodology for building practical and
provably correct distributed systems based on a unique blend
of TLA-style state-machine refinement and Hoare-logic ver-
ification. We demonstrate the methodology on a complex
implementation of a Paxos-based replicated state machine
library and a lease-based sharded key-value store. We prove
that each obeys a concise safety specification, as well as de-
sirable liveness requirements. Each implementation achieves
performance competitive with a reference system. With our
methodology and lessons learned, we aim to raise the stan-
dard for distributed systems from “tested” to “correct.”

1. Introduction

Distributed systems are notoriously hard to get right. Protocol
designers struggle to reason about concurrent execution on
multiple machines, which leads to subtle errors. Engineers
implementing such protocols face the same subtleties and,
worse, must improvise to fill in gaps between abstract proto-

This paper presents IronFleet, the first methodology for
automated machine-checked verification of the safety and
liveness of non-trivial distributed system implementations.
The IronFleet methodology is practical: it supports complex,
feature-rich implementations with reasonable performance
and a tolerable proof burden.

Ultimately, IronFleet guarantees that the implementation
of a distributed system meets a high-level, centralized spec-
ification. For example, a sharded key-value store acts like
a key-value store, and a replicated state machine acts like
a state machine. This guarantee categorically rules out race
conditions, violations of global invariants, integer overflow,
disagreements between packet encoding and decoding, and
bugs in rarely exercised code paths such as failure recov-
ery [70]. Moreover, it not only rules out bad behavior, it tells
us exactly how the distributed system will behave at all times.

The IronFleet methodology supports proving both safety
and liveness properties of distributed system implementa-
tions. A safety property says that the system cannot perform
incorrect actions; e.g., replicated-state-machine linearizabil-
ity says that clients never see inconsistent results. A liveness
property says that the system eventually performs a useful
action, e.g., that it eventually responds to each client request.

In larae_crale Aenlavmente enciirinag livenece 1¢ oritical cinece

RONFLEET Takeasorsys

FIrst automated machine-
checked verification of
safety and liveness of d non-
frivial distributed system
Implementation

Uses TLA style state-machine
refinements 1o reason about
protocol level concurrency
(lgnoring iImplementation)

Guarantees a system JQKMA'
implementation meets a

high-level specification Floyd-Hoare style imperative
.. Veriﬁcqﬁon to reason about
Rules out race condifions,..., imp|emenfqﬁ0n CQmp\exiﬂeg

iInvariant violations, & bugsl! (ignoring concurrency)

P refinement (83.5

Imlmentation (§3.4)

“... As the developer writes a given
method or proof, she typically sees

Qur
bulld system tracks dependencies
across files and outsources, In parallel,
each file’s verification to a cloud virfuadl
machine. While a full infegration build
done serially requires approximately 6
hours, In practice, the developer rarely
waits more than 6—8 minutes”

KEEP 9 Mind

Formally specitied
algorithms gives us the
most confidence that our
systems are doing the
right thing

No testing strategy will
ever give you a
completeness guaranfee
fthat no bugs exist

o 1R,
o : A
([]
»
. .
. .
® -
()
()
([]
o
[]
[]
()
()
. L]
o
o v
(]
ooo ‘. N
.
()
.)
(]
o
(]
(]
o 3
® ¢ a

HEYBRITNEY,
I’MREADY TO BUILD

BETTER SOF TWARE

AND
ITTOO

JUSTINE

TL:DR Consintency o

1 0
01111
10 1

We want highly available systems so we must use
weaker forms of consistency (remember CAP)

Application semanftics helps us make better
fradeoffs

Do not recreate the wheel, leverage existing
research allows us to not repeat past mistakes

TL:DR Verification

Veritication of distributed systems is O
complicated matter but we still need it

Today we leverage a multitude of methods o
gain confidence that we are doing the right thing

Still not as many fools as we should have. We wish
for more confidence with less work

FOLLOW
~ YOUR
DREAMS! /

/RANDOMMOOD/QCONSF2015
@ Caific - @Randorhwood;

