
Papers
We hear you like

INES  
Sombra
@Randommood

@Caitie

Caitie  
McCaffrey

Distributed
Systems

academic
Papers

our Journey today

Eventual  
Consistency

System
Verification

Eventual
Consistency

1983 1995

Thinking Consistency

Detection of
Mutual

Inconsistency
in Distributed

Systems

Managing
Update Conflicts

in Bayou, a
Weakly

Connected
Replicated

Storage System

Brewer's
conjecture &

the feasibility of
consistent,
available,

partition-tolerant
web services

2002

20152011

Conflict-free
replicated Data

Types

Feral Concurrency
Control: An Empirical

Investigation of
Modern Application

Integrity

Thinking Consistency

Service

Service

Service

Applications Before

Service

Service

Service

Applications Before

Applications Now

Service

Service

Service

High
availability

1983

Origin
Points

&
Version

Vectors

Key Take aways

We need Availability

Gives us a mechanism
for efficient conflict
detection

Teaches us that
networks are NOT
reliable

1995

Bayou Summary

System designed for weak connectivity

Eventual consistency via application-
defined dependency checks and
merge procedures

Epidemic algorithms to replicate state

“Applications must be
aware of and integrally

involved in conflict
detection and resolution”

Terry et. al

Bayou Take aways & thoughts

“Humans would
rather deal with
the occasional
unresolvable
conflict than
incur the
adverse impact
on availability”

like
prenups

2002

CAP Explained

PARTITION TOLERANCE

CONSISTENCY AVAILABILITY" #

!!

Consistency
Models Linearizable

Sequential

Causal

Pipelined random
access memory

Read your write Monotonic read Monotonic write

Write from read

CP Consistency

AP Consistency

2011

CRDTs Summary

Mathematical properties & epidemic
algorithms / gossip protocols

Strong Eventual Consistency - apply
updates immediately, no conflicts, or
rollbacks

via

CRDTs

* Stolen from Chris Meiklejohn

in practice

Applying rollbacks is
hard

Restrict operation
space to get provably
convergent systems

Active area of research

Resolving Conflicts

2015

Feral mechanisms for keeping DB integrity

Application-level mechanisms

Analyzed 67 open source Ruby on
Rails Applications

Unsafe > 13% of the time  
(uniqueness & foreign key constraint violations)

Concurrency control is hard!

Availability is important to application
developers

Home-rolling your own concurrency
control or consensus algorithm is very
hard and difficult to get correct!

$

Crap! B We still
have to ship this

system!

Crap! B We still
have to ship this

system!

Ship this
pile of burning

tires? But How do
we know if it

works?

System
Verification

Why do we verify/test?

We verify/test
to gain

confidence
that our system

is doing the
right thing now

& later

Types of verification & testing

Formal Methods Testing
TOP-DOWN

FAULT INJECTORS, INPUT GENERATORS

BOTTOM-UP

LINEAGE DRIVEN FAULT INJECTORS

WHITE / BLACK BOX

WE KNOW (OR NOT) ABOUT THE SYSTEM

HUMAN ASSISTED PROOFS

SAFETY CRITICAL (TLA+, COQ, ISABELLE)

MODEL CHECKING

PROPERTIES + TRANSITIONS (SPIN, TLA+)

LIGHTWEIGHT FM

BEST OF BOTH WORLDS (ALLOY, SAT)

Types of verification & testing

Formal Methods Testing
Pay-as-you-go & gradually
increase confidence

Sacrifice rigor (less
certainty) for something
more reasonable

Efficacy challenged by
large state space

High investment and high
reward

Considered slow & hard to
use so we target small
components / simplified
versions of a system

Used in safety-critical
domains

Verification Why so hard?

Nothing bad happens

Reason about 2 system
states. If steps between
them preserve our
invariants then we are
proven safe

SAFETY

Something good
eventually happens

Reason about infinite
series of system states

Much harder to verify
than safety properties

LIVENESS

Testing Why so hard?

A

B

!

!

?

Timing & Failures

Nondeterminism

Message ordering

Concurrency

Unbounded inputs

Vast state space

No centralized view

Behavior is aggregate

Components tested in
isolation also need to
be tested together

2008

FM

WhAT is this temporal logic thing?

TLA: is a combination of temporal logic with a logic of
actions. Right logic to express liveness properties with
predicates about a system’s current & future state

TLA+: is a formal specification language used to
design, model, document, and verify concurrent/
distributed systems. It verifies all traces exhaustively

One of the most commonly used Formal Methods

2014

FM

TLA+ at amazon Takeaways

Precise specification of systems in TLA+

Used in large complex real-world systems

Found subtle bugs & FMs provided
confidence to make aggressive optimizations
w/o sacrificing system correctness

Use formal specification to teach new
engineers

TLA+ at amazon Results

2014

TEST

Key Takeaways Failures require only 3
nodes to reproduce.
Multiple inputs needed  
(~ 3) in the correct order

Complex sequences of
events but 74% errors
found are deterministic

77% failures can be
reproduced by a unit test

Faulty error handling
code culprit

Used error logs to diagnose &
reproduce failures

Aspirator (their static checker) found 121 new
bugs & 379 bad practices!

2014

TEST

Molly Highlights
MOLLY runs and observes
execution, & picks a fault
for the next execution.
Program is ran again and
results are observed

Reasons backwards from
correct system outcomes
& determines if a failure
could have prevented it

Molly only injects the
failures it can prove might
affect an outcome

% &

Verifier
Programmer

“Presents a middle ground
between pragmatism and
formalism, dictated by the

importance of verifying fault
tolerance in spite of the

complexity of the space of
faults”

2015

'
(

)

*

+

FM

IronFleet Takeaways
First automated machine-
checked verification of
safety and liveness of a non-
trivial distributed system
implementation

Guarantees a system
implementation meets a
high-level specification

Rules out race conditions,…,
invariant violations, & bugs!

Uses TLA style state-machine
refinements to reason about
protocol level concurrency
(ignoring implementation)

Floyd-Hoare style imperative
verification to reason about
implementation complexities
(ignoring concurrency)

plus

Key Takeaways

“… As the developer writes a given
method or proof, she typically sees

feedback in 1–10 seconds indicating
whether the verifier is satisfied. Our
build system tracks dependencies

across files and outsources, in parallel,
each file’s verification to a cloud virtual
machine. While a full integration build
done serially requires approximately 6

hours, in practice, the developer rarely
waits more than 6–8 minutes“

Formally specified
algorithms gives us the
most confidence that our
systems are doing the
right thing

No testing strategy will
ever give you a
completeness guarantee
that no bugs exist

Keep In Mind

Hey Britney,
i’m ready to build
better software

And TEST
it too

Justin!

Consistency

We want highly available systems so we must use
weaker forms of consistency (remember CAP)

Application semantics helps us make better
tradeoffs

Do not recreate the wheel, leverage existing
research allows us to not repeat past mistakes

Forced into a feral world but this may change soon!

Tl;DR

 Verification

Verification of distributed systems is a
complicated matter but we still need it

Today we leverage a multitude of methods to
gain confidence that we are doing the right thing

Formal vs testing lines are starting to get blurry

Still not as many tools as we should have. We wish
for more confidence with less work

Tl;DR

github.com/Randommood/QConSF2015
@Caitie - @Randommood

Thank you!

Follow
your

dreams!

