cassandra in
Response Time Sensitive
Environments

Gil Tene, CTO & co-Founder, Azul Systems
@giltene

KSYSTEMS

About me: Gil Tene

@ co-founder, CTO @Azul
Systems

@ Have been working on
"think different” GC
approaches since 2002

@ A Long history building
Virtual & Physical
Machines, Operating
Systems, Enterprise apps,
etc...

@ I also depress people by
demonstrating how terribly
wrong their latency o nll

measurements are... * working on real-world trash compaction issues, circa 2004

©2015 Azul Systems, Inc.

Azul Systems

@ We build Java Virtual Machines
@ Powering mission-critical Java applications for Global 2000+

@ Deep expertise with latency-sensitive applications

@ from human sensitivity to application responsiveness
(fractions of a second)

@ to low latency trading systems (fractions of a msec)

@ Cassandra is one of our common deployment scenarios

Gartner | 2011

COOL VENDOR

2014

&AR'DSE

©2015 Azul Systems, Inc.

KSYSTEMS

Zing Overview

KSYSTEMS

Zing
@ A JVM for Linux/x86 servers

@ Delivers a continuously responsive execution platform

@ ELIMINATES Garbage Collection as a concern for enterprise
applications

@ Very wide operating range:
@ Used in everything from low latency to huge in-memory apps

® 1GB to 1TB Heaps. 10MB/sec to 20GB/sec allocation rates.

@ Combats Execution inconsistencies of all types
@ Not just GC: Anything that makes a JVM glitch or slow down
@ “"Not just Fast. Always Fast."

KSYSTEMS

What is Zing good for?

@ If you have a server-based Java application
@ And you are running on Linux (x86)

@ And you use using more than “300MB of memory

@ Then Zing will likely deliver superior behavior
metrics

Where Zing shines

& o Low latency

@ Eliminate behavior blips down to the sub-millisecond-units level

® Machine-to-machine “stuff”

@ Support higher *sustainable* throughput (the one that meets SLAs)

@ Human response times

@ Eliminate user-annoying response time blips. Multi-second and even
fraction-of-a-second blips will be completely gone.

@ Support larger memory JVMs *if needed* (e.g. larger virtual user

counts, or larger cache, in-memory state, or consolidating multiple
instances)

@ "Large” data and in-memory analytics

® Make batch stuff “business real time”. Gain super-efficiencies.

RYKSTEMS
©2015 Azul Systems, Inc.

RYRTEMSR'

AZUL

Vg -y
’

P et ey

-

Shans & oo
-
i

S
=
%)
=
@
i
%]
>
(]
3
re)
-
=)
N
(@)

Oracle HotSpot CMS, 1GB in an 8GB heap

o
14000

Hiccups by Time Interval

— Max per Interval ===99% ===99.90% ===99.99% ===Max

Y.

12000 5%

-
o
o
o
o

- Hiccup Duration (msec)

500 1000 1500 2000 2500 3000 3500
Elapsed Time (sec)

©2015 Azul Systems, Inc.

99.9% 99.99% 99.999%

Percentile

g ”Hiccup Duration (msec)' »

Hiccup Duration (msec)

Zing 5, 1GB in an 8GB heap

Hiccups by Time Interval

— Max per Interval

==99% ===99.90%

==99.99%

==Max

1000

1500 2000
Elapsed Time (sec)

2500

Hiccups by Percentile Distribution

3000

3500

90%

99%

99.9%

Percentile

99.99%

99.999%

99.9999%

Oracle HotSpot CMS, 1GB in an 8GB heap Zing 5, 1GB in an 8GB heap

Hiccups by Time Interval Hiccups by Time Interval

— Max per Interval ===99% ===99.90% ===99.99% ===Max —Max per Interval ===99% ===99.90% ===99.99% ===Max

Hiccup Duration (msec)

Hiccup Duration (msec)
N S (o)) (0]
o o o o
o o o o
(@) o (@) o

o

500 1000 1500 2000 2500 3000 3500 1000 1500 2000 2500 3000
Elapsed Time (sec) Elapsed Time (sec)

Hiccups by Percentile Distribution Hiccups by Percentile Distribution

Hiccup Duration (msec)
Hiccup Duration (msec)

99.9% 99.99% 99.999% 0% Max229.384 99% 99.9% 99.99% 99.999% 99.9999%

Percentile Percentile

Drawn to scale

©2015 Azul Systems, Inc.

Sustainable Throughput:
The throughput achieved while
safely maintaining service levels

2 » 7 > "' - : . 5 "t - .l o & _Q‘. ". ™ 2
S = i - ,‘«‘,5‘;) RN A %,LAZUL
y Wy . . ' - . . " oy ¥ .
©2015 Azul Systems, AL | oy = S1b t'%‘h:“‘l ?. _".~- NS IR - v -~ = *

RYRTEMSR'

AZUL

Vg -y
’

P et ey

-

Shans & oo
-
i

S
=
%)
=
@
i
%]
>
(]
3
re)
-
=)
N
(@)

RYRTEMSR'

AZUL

Vg -y
’

P et ey

-

Shans & oo
-
i

S
=
%)
=
@
i
%]
>
(]
3
re)
-
=)
N
(@)

Cumulative probability...

What are the chances of a single web page
view experiencing the 99%/’ile latency of:

- A single search engine node?
- A single Key/Value store node?
- A single Database node?

- A single CDN request?

KSYSTEMS

©2015 Azul Systems, Inc.

page loads that would
of requests || experience the 99%’lie
[(1 (.99 A N)) * 100%]

saksfifthavenue.com 66.5%

google.com ” 26 79,
(yes, that simple noise-free page) :
google.com)
search for "http requests per page” s

»
<
»n

»

Which HTTP response time metric is more
“representative” of user experience?

The 95%’lie or the 99.9%’lie

KSYSTEMS

Gauging user experience

Example: A typical user session involves 5 page
loads, averaging 40 resources per page.

- How many of our users will NOT experience
something worse than the 95%’lie?

Answer: ~0.003%

- How may of our users will experience at least one
response that is longer than the 99.9%’lie?

Answer: ~18%

KSYSTEMS

Response Time vs. Service Time

KSYSTEMS

©2015 Azul Systems, Inc.

Service Time vs. Response Time

Service Time, 90K/s vs 80K/s

90K: Max Service Time In Time Interval 80K: Max Service Time In Time Interval

Max per interval Q9% =09 9% =99 99% =——Max Max per interval 99% =—199.9% =—=99,99% - Max

Vi o &
o

I.
j Ll AAA“H ;l Jl

VOUUTIVUUWE 2 ar ARGl I . I
T MMV A AL W

-
[anepveseey [O9% | A*iA I

|
A
W WA UV WA T UM SATV AT WAV A LAl A~ M A

Hiccup Duration (msec)
Hiccup Duration (msec)

100 125 17 :) : ! 125
Elapsed Time (sec) Elapsed Time (sec)

90K: Service Time By Percentile Distribution 80L: Service Time By Percentile Distribution

F—_—‘F A |l MAX 68.485

MAX 73.335

Vi o

Hiccup Duration (msec)
£ 5

: : S - e -

Hiccup Duration (msec)

~N
o

NOWwW
WV o nm

—
W

Hiccups by Percentile Hiccups by Percentile

—= Hiccups by Percentile == Max == Hiccups by Percentile == Max

©2015 Azul Systems, Inc.

Response Time, 90K/s vs 80K/s

90K: Max Respinse Time In Time Interval
— Max per interval — 99% ==99.9% == 99.99% = Max|

Hiccup Duration (msec)

100 125 150 175 200 225
Elapsed Time (sec)

90K: Response Time By Percentile Distribution

MAXBI0759

8,000 1 P—

7,000 {|

v
o
o
(=

Hiccup Duration (msec)
e
o
<

99.0% 99.95%
Hiccups by Percentile

== Hiccups by Percentile = Max

©2015 Azul Systems, Inc.

Hiccup Duration (msec)

Hiccup Duration (msec)

80K: Max Response Time in Time Interval
| — Max per interval —99% ==99.9% ==99.99% = Max|

c A\
LY
My

75 100 125 150 175
Elapsed Time (sec)

80K: Response Time By Percentile Distribution

MAX 148252

99.0% 99.9% 99.99%
Hiccups by Percentile

I— Hiccups by Percentile = Maxl

Response Time, 90K/s vs 80K/s : Boom!

90K: Max Respinse Time In Time Interval 80K: Max Response Time in Time Interval
— Max per interval —99% ==99.9% ==99.99% = Max| — Max per interval — 99% ==99.9% ==99.99% = Max|

8,000 -

7,000 {
7,000 4

-

6,000 4
6,000

’

w
o
o
o

5,000 ;

4,000 -

3,000 ¢

Hiccup Duration (msec)
Hiccup Duration (msec

2,000

1,000 1

L —

75 100 125 150 175 50 75 100 125 150 175 200
Elapsed Time (sec) Elapsed Time (sec)

90K: Response Time By Percentile Distribution 80K: Response Time By Percentile Distribution

MAX S107.59] 80,000
8,000 1 —— 75,000 -

70,000 1
7,000 1 65,000 1
Y 60,000

6,000 55,000 -
~ 50,000 -
45,000 1
40,000
35,000 -

a. 30,000
g 25,000 -
2,000 - & 20,000
15,000

10,000

5,000

5,000 1

4,000 4

3,000 1

Hiccup Duration (msec)

MAX 148.242

99.0% 99.9% 0.0% 90.0% 99, 0% 99,9% 99.99%
Hiccups by Percentile Hiccups by Percentile

|— Hiccups by Percentile = Max| |—- Hiccups by Percentile = Maxl

©2015 Azul Systems, Inc.

“coordinator as savior” latency myth

"But with Cassandra’s Coordinator
and Quorum Consistency levels...”

Theory: If one node pauses, other nodes
are not likely to pause at the same time

... SO a quorum will be reached without
observing any one node's pause

KSYSTEMS

Anatomy of a quorum read...

A pause
here wont
be noticed

What about
a pause here?

KSYSTEMS

Cassandra behavior on Zing

KSYSTEMS

latency (msec)

©2015 Azul Systems, Inc.

OpenJDK Latency

4
-
b
b i -4

200 300
tume (sec)

op rate

partition rate

row rate

latency mean

latency median

latency 95th percentile
latency 99th percentile
latency 99.9th percentile
latency max

Response Time

cassandra-stress (OpenJDK)' Max Latency -~

40001

26996

26996

30.6 (0.7)
0.5 (0.3)
244.4 (1.1)
537.4 (2.0)
1052.2 (8.4)

: 1314.9 (1312.8)

Service time

latency (msec)

Zing Latency

cassandra-stress (Zing) Max Latency ——+—

latency (msec)
latency (msec)

. itk ik chiit s ek il
0 100 200 300 400 500 600
tume (sec)

op rate : 40001
partition rate : 26961

row rate : 26961
latency mean : 0.6 (0.5)
latency median : 0.5 (0.5)
latency 95th percentile : 1.0 (0.9)
latency 99th percentile : 2.7 (1.9)
latency 99.9th percentile : 13.3 (3.8)
latency max : 110.6 (28.2)

©2015 Azul Systems, Inc. ReSponse Tlme SerVice .hme

OpenJDK: 200-1400 msec stalls

OpenJDK Latency

cassandra-stress (OpenJDK) Max Latency ——

Zing Latency

- -
o ()
L o
b7} b7}
E E
< E
> >
) 1)
c c
& L
= s

!’ | ’I..J_.

120
cassandra-stress (Zing) Max Latency ——

time (sec)

latency (msec)
latency (msec)

time (sec)

op rate : 40001 op rate : 40001
partition rate : 26996 partition rate : 26961

row rate : 26996 row rate : 26961
latency mean : 30.6 (0.7) latency mean : 0.6 (0.5)
latency median : 0.5 (0.95) latency median : 0.5 (0.95)
latency 95th percentile : 244.4 (1.1) latency 95th percentile : 1.0 (0.9)
latency 99th percentile : 537.4 (2.0) latency 99th percentile : 2.7 (1.9)
latency 99.9th percentile : 1052.2 (8.4) latency 99.9th percentile : 13.3 (3.8)
latency max : 1314.9 (1312.8) latency max : 110.6 (28.2)

Response Time Service fime Response Time Service time AZUL

©2015 Azul Systems, Inc.

OpenJDK: 200-1400 msec stalls

latency (msec)

op rate
partitio
row rate
latency
latency
latency
latency
latency
latency

©2015 Azul Systems, Inc.

OpenJDK Latency

300
time (sec)

n rate

mean

median

95th percentile
99th percentile
99.9th percentile
max

Response Time

cassandra-stress (OpenJDK)‘Max Latency ——

40001

26996

26996

30.6 (0.7)

0.5 (0.5)

244.4 (1.1)
537.4 (2.0)
1052.2 (8.4)
1314.9 (1312.8)

Service time

latency (msec)

Zing (drawn to scale)

op rate
partitio
row rate
latency
latency
latency
latency
latency
latency

n rate

mean

median

95th percentile
99th percentile
99.9th percentile
max

Response Time

40001

26961

26961

0.6 (0.5)
0.5 (0.5)
1.0 (0.9)
2.7 (1.9)
13.3 (3.8)
110.6 (28.2)

Service time

What if we focused on
“already low latency” setups?

"I know really bad GC pauses may
happen once in a while, but I'm
interested in the common behavior
between those..."”

KSYSTEMS

A set of pure read experiments...

aimed at highly repeatable results

(focused on frequent blips, not the hard to reliably repeat huge pauses)

* Same AWS r3.8xlarge instance (underutilized)
** single node cluster, pre-primed with 5M entries
*** stressed via (enhanced) cassandra-stress, pure read test

RYKSTEMS
©2015 Azul Systems , Inc.

R
2
©
2
2
=
&
o)
C
4
@
-

HotSpot @90K/s & 85K/s vs.
Zing @90K/s & 85K/s

Latency by Percentile Distribution
10,000

7,500
5,000
2,500

0

0% % % 99.9% 99.99% 99.999% 99.9999%
Percentile
— 90k - h90k h85k —— z85k

Wrong Place to Look:
They both “suck” at >85K/sec

99.99999%

KSYSTEMS

HotSpot 85K/s vs. Zing 85K/s

Latency by Percentile Distribution
160

120

nds)

80

3]
o
@

2

3
)
c

2
®

-~J

40

0
0% % 99% 99.9%

Percentile
- h85k - 285k

Looks good, but still
the wrong place to look

KSYSTEMS

HotSpot @40K/s vs. Zing @40K/s

Latency by Percentile Distribution
50.0

37.5

25.0

«
v
©
€
§
=
E
)
c
>
®
-

12.5

eoo-——----"-"""""""""""""""""""""""""
0% % % 99.9% 99.9999%

Percentile
- h40k —— z40k

More interesting...
What can we do with this?

KSYSTEMS

HotSpot @10K/s vs. Zing @40K/s

Latency by Percentile Distribution

—_
o)
©
S
@
2
=
&
>
c
D
@
-~

99.9% 99.999% 99.9999%

Percentile

—— h10k —— 240k

E.g. if "99%’ile < 5msec” was a goal:
Zing delivers similar 99%’ile and superior 99.9%/’ile+

while carrying 4x the throughput

AZUL
©2015 Azul Systems , Inc.

KSYSTEMS

HotSpot @2K/s vs. Zing @20K/s

Latency by Percentile Distribution
50.0

N
w
°©
€
S
3
3
)
&
S
@
~J

99.9%
Percentile

— h2k —— 220k

99.999% 99.9999%

E.g. if "99.9%’ile < 10msec” was a goal:
Zing delivers similar 99%/’ile and 99.9%/’ile
while carrying 10x the throughput

AZUL
©2015 Azul Systems , Inc.

KSYSTEMS

HotSpot @2k thru 80k

Latency by Percentile Distribution

-
w
2
8
@
3
)
S
-—
©
~J

——

90% 99% 99.9% 99.99% 99.999% 99.9999%
Percentile
= h40k - h20k h2zk =———h5k =——h10k ~———h60k -~ h70k -~ h80k

©2015 Azul Systems, Inc.

-
w
©
8
3
L
L
E
g
e
©
-~

©2015 Azul Systems, Inc.

HotSpot @2k thru 70k

Latency by Percentile Distribution

99% 99.9% 99.99% 99.999%
Percentile
— h40k - h20k h2zk =-——h5k =——h10k -~ h60k - h70k

99.9999%

Zing @20k thru 70k

Latency by Percentile Distribution

-~
)
g
]
e
L
&
&
s
e
@
~

99% 99.9% 99.99% 99.999% 99.9999%
Percentile

220k - 240k 260k —— z70k

AZUL
©2015 Azul Systems, Inc. [$ s

©2015 Azul Systems, Inc.

Zing & HotSpot @2k thru 70k

Latency by Percentile Distribution

Latency (microseconds)

99.9% 99.99% 99.999% 99.9999%
Percentile

~— hSk =——h10k ~—— h60k -—— h70k

Latency by Percentile Distribution

Latency (microseconds)

99% 99.9% 99.99% 99.999% 99.9999%
Percentile
— z20k = z40k 260k —— z70k

Zing & HotSpot, 10K/s thru 60K/s

Latency by Percentile Distribution

HotSpot @ 10K, 20K, 40K, 60K

ﬁ
S
2
®
:
L
&
o)
S
2
®
~

Zing @20K, 40K, 60K
90% 99% 99.9% 99.99% 99.999% 99.9999%

Percentile
= h40k - h20k h10k - h60k =220k =~ 240k - 260k

Lots of conclusions can be drawn from the above...
E.g. Zing delivers a consistent 100x reduction in the
rate of occurrence of >20msec response times

RYKSTEMS
©2015 Azul Systems , Inc.

HotSpot Response Time @40K/s Zing Response Time @40K/s

Max per interval 99% ==99.9% =—99.99% - Max Max per interval 99% =—99.9% =—99.99% - Max

(v
W
(&%)

o

N w

v o
~N ¥V}
w

N
o

I“‘ 1

l'w .] [P TT T
LMA 1\% 11 11‘11 1' l‘l |] ' [‘
] 1 | ‘ | 1] | | i“ ‘ J w |L ILJT &“ Jl'\l \ “‘/~* " Vv y‘ .l [‘{l' "!'H\ f‘YJhL’ l_l‘ 'll”h.

70 1 2 25 50 75 100 125 150 175 200 225 250
Elapsed Tlme (sec) Elapsed Time (sec)

Hiccup Duration (msec)
N
o

—
v

Hiccup Duration (msec)

MAX 43.483

w
)

W

o
W
o

w

MAX 20.644

~N N
Q

Hiccup Duration (msec)
l’(\DJ ~N

wn
Hiccup Duration (msec)

—
w
- -
W

99.0% 99.9% 99.99% 99.999% - o 0.0%) 0% 99.0% 99.9% 99.99% 99.999%
Hiccups by Percentile Hiccups by Percentile

- Hiccups by Percentile = Max - Hiccups by Percentile = Max

©2015 Azul Systems, Inc.

HotSpot: Response Time @70K/sec Zing: Response Time @70K/sec

— Max per interval = 99% ==99.9% ==99.99% - Max — Max per interval = 99% ==99.9% =—99.99% - Max

)
Vi W,
Qo W

N
w
F
W

N
o

| ”‘“"""J'

H A 'I"\ " M"|)
yy vwv /

L

N
i

Hiccup Duration (msec
= bt

&
Hiccup Duration (msec

—
w

IJ LMF"“ 'i\’ l“ \‘V'ﬂ" "ﬂ
7] '} N L

100 125 150 175 200 225 y 75 100 125 150
Elapsed Time (sec) Elapsed Time (sec)

—
v O

MAX 64.815

Hiccup Duration (msec)
Hiccup Duration (msec)

99,99%
Hiccups by Percentile Hiccups by Percentile

|— Hiccups by Percentile = Max| |— Hiccups by Percentile = rvm|

©2015 Azul Systems, Inc.

w
v

w
o
[
o

~N
W
~N
w

~N
o
~N
o

a . l
J*ng\u"i — m!_ : B ﬂ) i
A R LY MJJ” AN A M"’ “1“ Ak "J"!'w" .w.:\' ul ‘\'1}\

75 100 125 150 175 225 : 25 50 75 100 125 150 175 200 225 250
Elapsed Time (sec) Elapsed Time (sec)

Hiccup Duration (msec)

!
|

Hiccup Duration (msec)

Hiccups By Percentlle Distribution

MAX 43,975

L
o

N
v

MAX 20.644

N
o

Hiccup Duration (msec)
Hiccup Duration (msec)

=
W

99.0% 99.9% 99.99% .999% 0% 0% 0% 99.9% 99.99%
Hiccups by Percentile Hiccups by Percentile

= Hiccups by Percentile = Max - Hiccups by Percentile = Max

©2015 Azul Systems, Inc.

W
W
)
Vi

.‘
L

w

—

o
(=]
N
<

—
v

Hiccup Duration (msec)
o

Hiccup Duration (msec)
o o

H

Hal

L

“A

il A T
M’” al fi'“’”‘“ W' WAV AM W Vi WA A ﬁ '&"W’

125 150 225 75 100 125 150 175 200 225
Elapsed Time (sec) Elapsed Time (sec)

MAX 44.663

MAX 24,936

N
o

Hiccup Duration (msec)

Hiccup Duration (msec)

99.0% 99.9%
Hiccups by Percentile

- Hiccups by Percentile = Max — Hiccups by Percentile = Max

©2015 Azul Systems, Inc.

OpenJDK: 200-1400 msec stalls

latency (msec)

op rate
partitio
row rate
latency
latency
latency
latency
latency
latency

©2015 Azul Systems, Inc.

OpenJDK Latency

300
time (sec)

n rate

mean

median

95th percentile
99th percentile
99.9th percentile
max

Response Time

cassandra-stress (OpenJDK)‘Max Latency ——

40001

26996

26996

30.6 (0.7)

0.5 (0.5)

244.4 (1.1)
537.4 (2.0)
1052.2 (8.4)
1314.9 (1312.8)

Service time

latency (msec)

Zing (drawn to scale)

op rate
partitio
row rate
latency
latency
latency
latency
latency
latency

n rate

mean

median

95th percentile
99th percentile
99.9th percentile
max

Response Time

40001

26961

26961

0.6 (0.5)
0.5 (0.5)
1.0 (0.9)
2.7 (1.9)
13.3 (3.8)
110.6 (28.2)

Service time

A simple visual summary &

This is Cassandra on HotSpot

1000

1400
8 8
E
>
g
é";{

This is Cassandra on Zing

00
00
400
200
0

I | | [400
| | ‘ ‘ } l } ‘ ‘ ‘ 200
R . |’ . ‘ Ll LA UL L
100 200 300 400 500 600
time (sec)

0

Any Questions?

KSYSTEMS

