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About me: Gil Tene

@ co-founder, CTO @Azul
Systems

@ Have been working on
"think different” GC
approaches since 2002

@ A Long history building
Virtual & Physical
Machines, Operating
Systems, Enterprise apps,
etc...

@ I also depress people by
demonstrating how terribly
wrong their latency o nll

measurements are... * working on real-world trash compaction issues, circa 2004
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Azul Systems

@ We build Java Virtual Machines
@ Powering mission-critical Java applications for Global 2000+

@ Deep expertise with latency-sensitive applications

@ from human sensitivity to application responsiveness
(fractions of a second)

@ to low latency trading systems (fractions of a msec)

@ Cassandra is one of our common deployment scenarios

Gartner | 2011

COOL VENDOR

2014
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Zing Overview
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Zing
@ A JVM for Linux/x86 servers

@ Delivers a continuously responsive execution platform

@ ELIMINATES Garbage Collection as a concern for enterprise
applications

@ Very wide operating range:
@ Used in everything from low latency to huge in-memory apps

® 1GB to 1TB Heaps. 10MB/sec to 20GB/sec allocation rates.

@ Combats Execution inconsistencies of all types
@ Not just GC: Anything that makes a JVM glitch or slow down
@ “"Not just Fast. Always Fast."
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What is Zing good for?

@ If you have a server-based Java application
@ And you are running on Linux (x86)

@ And you use using more than “300MB of memory

@ Then Zing will likely deliver superior behavior
metrics




Where Zing shines

& o Low latency

@ Eliminate behavior blips down to the sub-millisecond-units level

® Machine-to-machine “stuff”

@ Support higher *sustainable* throughput (the one that meets SLAs)

@ Human response times

@ Eliminate user-annoying response time blips. Multi-second and even
fraction-of-a-second blips will be completely gone.

@ Support larger memory JVMs *if needed* (e.g. larger virtual user

counts, or larger cache, in-memory state, or consolidating multiple
instances)

@ "Large” data and in-memory analytics

® Make batch stuff “business real time”. Gain super-efficiencies.

RYKSTEMS
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Oracle HotSpot CMS, 1GB in an 8GB heap
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Oracle HotSpot CMS, 1GB in an 8GB heap Zing 5, 1GB in an 8GB heap
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Sustainable Throughput:
The throughput achieved while
safely maintaining service levels
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Cumulative probability...

What are the chances of a single web page
view experiencing the 99%/’ile latency of:

- A single search engine node?
- A single Key/Value store node?
- A single Database node?

- A single CDN request?
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page loads that would
# of requests || experience the 99%’lie
[(1 (.99 A N)) * 100%]

saksfifthavenue.com 66.5%

google.com ” 26 79,
(yes, that simple noise-free page) :
google.com )
search for "http requests per page” s
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Which HTTP response time metric is more
“representative” of user experience?

The 95%’lie or the 99.9%’lie
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Gauging user experience

Example: A typical user session involves 5 page
loads, averaging 40 resources per page.

- How many of our users will NOT experience
something worse than the 95%’lie?

Answer: ~0.003%

- How may of our users will experience at least one
response that is longer than the 99.9%’lie?

Answer: ~18%

KSYSTEMS



Response Time vs. Service Time
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Service Time vs. Response Time




Service Time, 90K/s vs 80K/s
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Response Time, 90K/s vs 80K/s
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Response Time, 90K/s vs 80K/s : Boom!
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“coordinator as savior” latency myth

"But with Cassandra’s Coordinator
and Quorum Consistency levels...”

Theory: If one node pauses, other nodes
are not likely to pause at the same time

... SO a quorum will be reached without
observing any one node's pause
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Anatomy of a quorum read...

A pause
here wont
be noticed

What about
a pause here?
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Cassandra behavior on Zing
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latency (msec)

©2015 Azul Systems, Inc.

OpenJDK Latency
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Zing Latency

cassandra-stress (Zing) Max Latency ——+—
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OpenJDK: 200-1400 msec stalls

OpenJDK Latency
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OpenJDK: 200-1400 msec stalls
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What if we focused on
“already low latency” setups?

"I know really bad GC pauses may
happen once in a while, but I'm
interested in the common behavior
between those..."”
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A set of pure read experiments...

aimed at highly repeatable results

(focused on frequent blips, not the hard to reliably repeat huge pauses)

* Same AWS r3.8xlarge instance (underutilized)
** single node cluster, pre-primed with 5M entries
*** stressed via (enhanced) cassandra-stress, pure read test

RYKSTEMS
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HotSpot @90K/s & 85K/s vs.
Zing @90K/s & 85K/s

Latency by Percentile Distribution
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Wrong Place to Look:
They both “suck” at >85K/sec
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HotSpot 85K/s vs. Zing 85K/s

Latency by Percentile Distribution
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Looks good, but still
the wrong place to look
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HotSpot @40K/s vs. Zing @40K/s

Latency by Percentile Distribution
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More interesting...
What can we do with this?
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HotSpot @10K/s vs. Zing @40K/s

Latency by Percentile Distribution
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E.g. if "99%’ile < 5msec” was a goal:
Zing delivers similar 99%’ile and superior 99.9%/’ile+

while carrying 4x the throughput

AZUL
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HotSpot @2K/s vs. Zing @20K/s

Latency by Percentile Distribution
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E.g. if "99.9%’ile < 10msec” was a goal:
Zing delivers similar 99%/’ile and 99.9%/’ile
while carrying 10x the throughput
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HotSpot @2k thru 80k

Latency by Percentile Distribution
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HotSpot @2k thru 70k

Latency by Percentile Distribution
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Zing @20k thru 70k

Latency by Percentile Distribution
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Zing & HotSpot @2k thru 70k

Latency by Percentile Distribution
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Zing & HotSpot, 10K/s thru 60K/s

Latency by Percentile Distribution

HotSpot @ 10K, 20K, 40K, 60K
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Zing @20K, 40K, 60K
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Percentile
= h40k - h20k h10k - h60k =220k =~ 240k - 260k

Lots of conclusions can be drawn from the above...
E.g. Zing delivers a consistent 100x reduction in the
rate of occurrence of >20msec response times
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HotSpot Response Time @40K/s Zing Response Time @40K/s
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HotSpot: Response Time @70K/sec Zing: Response Time @70K/sec
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OpenJDK: 200-1400 msec stalls
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OpenJDK Latency
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A simple visual summary &

This is Cassandra on HotSpot
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This is Cassandra on Zing
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Any Questions?
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