
Architecting Distributed Databases for
Failure

A Case Study with Druid

Fangjin Yang
Cofounder @ Imply

Overview

The Bad

The Really Bad

The Catastrophic

Best Practices: Operations

Everything is going to fail!

Requirements

Scalable
- Tens of thousands of nodes
- Petabytes of raw data

Available
- 24 x 7 x 365 uptime

Performant
- Run as smoothly as possible when things go wrong

Druid

Open source distributed data store

Column oriented storage of event data

Low latency OLAP queries & low latency data ingestion

Initially designed to power a SaaS for online advertising (in AWS)

Our real-world example case study

The Bad

Single Server Failures

Common

Occurs for every imaginable and unimaginable reason
- Hardware malfunction, kernel panic, network outage, etc.
- Minimal impact

Standard solution: replication

Druid Segments

Timestamp Dimensions Measures

2015-01-01T00

2015-01-01T01

2015-01-02T05

2015-01-02T07

2015-01-03T05

2015-01-03T07

Timestamp Dimensions Measures

2015-01-01T00

2015-01-01T01

Timestamp Dimensions Measures

2015-01-02T05

2015-01-02T07

Timestamp Dimensions Measures

2015-01-03T05

2015-01-03T07

Partition by time

Segment_2015-01-01/2014-01-02

Segment_2015-01-02/2014-01-03

Segment_2015-01-03/2014-01-04

Replication Example

Segment_2015-01-01/2015-01-02
(Segment_1)

Segment_2015-01-01/2015-01-02
(Segment_2)

Segment_2015-01-01/2015-01-02
(Segment_3)

Segment_1
Segment_2

Segment_1
Segment_3

Segment_2
Segment_3

Load

Druid Historicals

Druid BrokersQueries

Client

Query Segment_1

Segment_2015-01-01/2015-01-02
(Segment_1)

Segment_2015-01-01/2015-01-02
(Segment_2)

Segment_2015-01-01/2015-01-02
(Segment_3)

Segment_1
Segment_2

Segment_1
Segment_3

Segment_2
Segment_3

Load

Druid Historicals

Druid BrokersQueries

Client

Query Segment_1

Segment_2015-01-01/2015-01-02
(Segment_1)

Segment_2015-01-01/2015-01-02
(Segment_2)

Segment_2015-01-01/2015-01-02
(Segment_3)

Segment_1
Segment_2

Segment_1
Segment_3

Segment_2
Segment_3

Load

Druid Historicals

Druid BrokersQueries

Client

Multi-Server Failures

Common: 1 server fails
Less common: >1 server fails

Data center issues (rack failure)

Two strategies:
- fast recovery
- multi-datacenter replication

Fast Recovery

Complete data availability in the face of multi-server failures is hard!

Focus on fast recovery instead

Be careful of the pitfalls of fast recovery

More viable in the cloud

Fast Recovery Example

Segment_2015-01-01/2015-01-02
(Segment_1)

Segment_2015-01-01/2015-01-02
(Segment_2)

Segment_2015-01-01/2015-01-02
(Segment_3)

Segment_1
Segment_2

Segment_1
Segment_3

Segment_2
Segment_3

Load

Druid Historicals

Druid BrokersQueries

Client

Deep Storage
(S3/HDFS)

Load

Fast Recovery Example

Segment_1
Segment_2

Segment_1
Segment_3

Segment_2
Segment_3

Druid Historicals

Load

Deep Storage
(S3/HDFS)

Fast Recovery Example

Segment_1
Segment_2

Druid Historicals

Deep Storage
(S3/HDFS)

Load

Fast Recovery Example

Segment_1
Segment_2

Druid Historicals

Deep Storage
(S3/HDFS)

Load

Druid Coordinator

Load Segment_1,
Segment_3

Load Segment_2,
Segment_3

Fast Recovery Example

Segment_1
Segment_2

Druid Historicals

Deep Storage
(S3/HDFS)

Load

Druid Coordinator

Segment_1
Segment_3

Segment_2
Segment_3

Dangers of Fast Recovery

Easy to create bottlenecks
- Prioritize how resources are spent during recovery
- Druid prioritizes data availability and throttles replication

Beware query hotspots
- Intelligent load balancing during recovery is important

Fast Recovery Example

Segment_1
Segment_2

Segment_1
Segment_3

Segment_2
Segment_3

Druid Historicals

Load

Deep Storage
(S3/HDFS)

Fast Recovery Example

Druid Historicals

Deep Storage
(S3/HDFS)

Load
Segment_1
Segment_2
Segment_3

Overloaded!

The Really Bad

Data Center Outage

Very uncommon

Power loss

Can be extremely disruptive without proper planning

Solution: Multi-datacenter replication

Beware pitfalls of multi-datacenter replication

Multi-Datacenter Replication

Segment_1
Segment_2
Segment_3

Segment_1
Segment_3

Segment_2
Segment_3

Druid Historicals

Druid BrokersQueries

Client

Druid Coordinator

Data Center 1

Data Center 2

Multi-Datacenter Pitfalls

Coordination + leader election can be tricky

Communication can require non-trivial network time

Coordination usually done with heartbeats and quorum decisions

Writes, failovers, & consistent reads require round trips

Multi-Datacenter Replication

Client

Data Center 1

Data Center 2

The Catastrophic

“Why are things slow today?”

Poor performance is much worse than things completely failing

Causes:
- Heavy concurrent usage (multi-tenancy)
- Hotspots & variability
- Bad software update

Architecting for Multi-tenancy

Small units of computation
- No single query should starve out a cluster

Druid Multi-tenancy

Segment_query_1

Segment_query_2

Segment_query_1

Segment_query_3

Segment_query_2

Segment_query_1

Segment_query_4

Druid Historical

Queries
Processing
Order

Architecting for Multi-tenancy

Resource prioritization and isolation
- Not all queries are equal
- Not all users are equal

Druid Multi-tenancy

Tier 1: Older
Data

Tier 2: Newer
Data

Tier 2: Newer
Data

Dedicated
for Older
data

Druid Historicals

Druid Brokers

Dedicated
for Newer
Dat

Queries

Client

Hotspots

Incredible variability in query performance among nodes

Nodes may become slow but not fail

Difficult to detect as there is nothing obviously wrong

Solutions:
- Hedged requests
- Selective Replication
- Latency Induced Probation

Hedged Requests

Segment_1
Segment_2

Segment_1
Segment_3

Segment_2
Segment_3

Druid Historicals

Druid Brokers

Client

Hedged Requests

Segment_1
Segment_2

Segment_1
Segment_3

Segment_2
Segment_3

Druid Historicals

Druid Brokers

Client

Minimizing Variability

Selective Replication

Latency-induced probation

Great paper: https://web.stanford.edu/class/cs240/readings/tail-at-scale.pdf

Bad Software Updates

It is very difficult to simulate production traffic
- Testing/staging clusters mostly verify correctness

No noticeable failures for a long time

Common cause of cascading failures

Rolling Upgrades

Be able to update different components with no down time

Backwards compatibility is extremely important

Roll back if things are bad

Rolling Upgrades

V2

V1

V1

V1

Druid Historicals

Druid Brokers

V1

Queries

Client

Rolling Upgrades

V2

V2

V2

V1

Druid Historicals

Druid Brokers

V1

Queries

Client

Rolling Upgrades

V2

V2

V2

V2

Druid Historicals

Druid BrokersQueries

Client

V1

Best Practices: Operations

Monitoring

Detection of when things go badly

Define your critical metrics and acceptable values

Alerts

Alert on critical errors
- Out of disk space, out of cluster capacity, etc.

Design alerts to reduce “noise”
- Distinguish warnings and alerts

Exploratory Analytics

Extremely critical to diagnosing root causes quickly

Not many organizations do this

Takeaways

Everything is going to fail!
- Use replication for single server failures
- Use fast recovery for multi-server failures (when you don’t want to set up

another data center)
- Use multi-datacenter replication when availability really matters
- Alerting, monitoring, and exploratory analysis are critical

Thanks!

@implydata
@druidio
@fangjin

imply.io
druid.io

