Contracts in Clojure:
Settling Types vs Tests

What do we know?

How do we know 1t7?

Informal
Reasoning

Formal &/ Experimental
Proofs Evidence

// Scala

def formatReport(data: ReportData): ExcelSheet

o—B

(defn forimiathatpepdreport-data]
..)

(function-name arg1 arg2)

function application

function definition

(defn function-name [param1 param?2]
(println "Hello QCon")
(do-something-with (and param1 paramz2)))

last expression is the result

(function-name arg1 arg2)

square braces
make a vector

(defn function-name [param1 param?2]
(println "Hello QCon")
(do-something-with (and param1 paramz2)))

(defn forimiathatpepdreport-data]
..)

(defn ad-performance-report [params]
(-> (fetch-events params)
(analyze-ad-performance params)

formidrnepierdport

(defn ad-performance-report [params]

(-> (fetcheteterseqrdsams)

(analyze-ad-performance params)

—="mat-report))

L

(defn fetEietvenents [params]
...)

curly braces make a map

{:.when 12:34:56 7/8/90
‘what "show"
'who "abc123"}

give a thing a name

(def Event {:when org.joda.time.DateTime
:what java.lang.String
'who jgva.lang.String}

(:require [schema.core :as sj)

dependency

(def Event {:when DateTime
‘what s/Str
Wwho s/Str}

(def Incident s/Str)
(def Customer s/Str)

(def EMenmént {:when DateTime
‘what Incident
'who Customer}

(def Event {:when DateTime
‘what Incident
'who Customer}

[Event]

(defn fetch-events [params]

)

[Event]

(:require [schema.core :as S])

(s/defn fetch-events - [Event]
[params}

)

[Event]

(deftest fetch-events-test

(= (expected (fetch-events input))))

(use-fixtures schema.test/validate-schemas)

(deftest fetch-events-test

(= (expected (fetch-events input))))

(defn ad-performance-report [params]
(-> (fetch-events params)

(analyzeadg-eeifopadoaadricems)
format-report))

(defn anaf@¥zedasepRnoEnaBdevents params]
(-> events
(group-up params)
summarize
add-total-row
(add-headers params)))

(defn analyze-ad-performance [events]
(-> events
(group-up params)
summarize
add-total-row
(add-headers params)))

[Event]

(defn analyze-ad-performance [events]
(-> events
(group-up params)
summarize
add-total-row
(add-headers params)))

[Event] [[Event]]

(defn analyze-ad-performance [events]
(-> events
(group-up params)
summarize
add-total-row
(add-headers params)))

[Event] [[Event]]

[[Event]]

[[Event] Summation] .E

[(one [Event])
(one Summation)] .E

[(s/one [Event] "event list")
(s/lone Summation "group sum")]

{:groups [[(s/one [Event] "event list")
(s/one Summation "group sum")]]}

{:groups [[(s/one [Event] "event list")
(s/lone Summation "group sum")]]
total Totals}

{:header Headers
.groups [[(s/one [Event] "event list")
(s/one Summation "group sum")]]

total Totals})

(def ReportData
{:header Headers
.groups [[(s/one [Event] "event list")
(s/one Summation "group sum")]]
total Totals})

(s/defn analyze-ad-performance :- ReportData
[events :- [Event]
params :- Params]
(-> events
(group-up params)
summarize
add-total-row
(add-headers params)))

(s/defn analyze-ad-performance :- ReportData

)

(s/defn analyze-ad-performance
- (at-least ReportData)

)

(defn at-least [map-schema]
(merge map-schema

{s/Any s/Any}))

(s/defn analyze-ad-performance
- (at-least ReportData)

)

What do we know?

What do we know?

data shape

What do we know?

data shape
value boundaries

Headers

(def Headers
{:title
(s/constrained
S/Str
(s/pred (complement empty?) "nonempty")
(s/pred capitalized? "Title Caps"))
...}

What do we know?

data shape
data value boundaries
relationships within values

What do we know?

data shape
data value boundaries
relationships within values

What could we know?

What do we know?

data shape
data value boundaries
relationships within values

What could we know?
produced types

Seq[Event]

(s/defn fetch-events :- [Event]
[params}

)

(s/defn fetch-events :- [Event]
[params}

)

Wt
‘\y\f}‘

(st/defn fetch-events :+ (st/LazySeq Event)

[params}
check this later

)

(:require [schematron.core :as st])

(st/defn fetch-events :+ (st/LazySeq Event)
[params}

)

(s/defn a-higher-order-function
[predicate :- (s/=> Bool Event)

)

et
‘\;\Q‘
(st/defn a-higher-order-function
[predicate + (st/=> Bool Event)

]
check this later

(s/defn a-higher-order-function :- Event
[predicate :- (st/=> Bool Event)

)

et
‘\;‘Q‘

(st/defn [A] a-higher-order-function :- A
[predicate :+ (st/=> Bool A)

)

(a-higher-order-function Event is-happy ...)

What do we know?

data shape
data value boundaries
relationships within values

What could we know?
produced types

relationships between types

What do we know?

data shape
data value boundaries
relationships within values

What could we know?

produced types
relationships between types
relationships between values

(defn group-up [events params]
{:post [(as-lazy-as events %)]

.2))
postcondition

data shape
data value boundaries
relationships within values

produced types
relationships between types
relationships between values

How do we know It?

(testing "grouping of rows"

(analyze-ad-performance
events

U)

(use-fixtures schema.test/validate-schemas)

(testing "grouping of rows"

(analyze-ad-performance
events

U)

(analyze-ad-performance
events

U)
)

Input does not match schema Params

Missing required key :title
Missing required key :start
Missing required key :end

(analyze-ad-performance
events
(sc/complete {} Params)

)

"Fill in everything else with something random until it
meets this schema’

{:title "YhKEzII"
start "-217863493-11-21T00:54:39.8722"],
end "-258417656-09-30T01:08:11.904Z"]}

any date before
the start

any date
before now

(use-fixtures schema.test/validate-schemas)

(testing "grouping of rows"

(analyze-ad-performance
[events]
(sample-one param-gen))

)

1 test IS an anecdote

generative tests are evidence

Experimental

Evidence

(use-fixtures schema.test/validate-schemas)

(defspec analyze-ad-performance-spec 100
(for-all [events events-gen
params param-gen]
(analyze-ad-performance events params)))

(s/defn analyze-ad-performance :- ReportData

)

What do we know?

Schemas

How do we know 1t7?

(Generative Tests

Contract

stripe api

Introduction

Authentication
Errors

Expanding Objects
Idempotent Requests
Metadata

Pagination

Request IDs

Versioning

Balance
Charges

Customers

The customer object
Create a customer
Retrieve a customer
Update a customer

Delete a customer

The customer object

id

account_balance

created

currency

Current balance, if any, being stored on
the customer’s account. If negative, the
customer has credit to apply to the next
invoice. If positive, the customer has an
amount owed that will be added to the
next invoice. The balance does not refer
to any unpaid invoices; it solely takes into
account amounts that have yet to be
successfully applied to any invoice. This
balance is only taken into account for
recurring charges.

The currency the customer can be
charged in for recurring billing purposes
(subscriptions. invoices, invoice items).

curl Ruby Python PHP Node

Example Response

com.stripe.model.Customer JSON: {
"3d": "cus_7MxHmoJ3VOQhgO",
"object": "customer",
"account_balance": 0,
"created": 1447781746,
"currency": "usd",

"default_source": "card_178DMr2eZvKYLlo2CEolHjbJX",

"delinquent": false,
"description": null,
"discount": null,

"email": "virtumedix+llljd@gmail.com",

"livemode": false,
"metadata": {
s
"shipping": null,
"sources": {

Lol oh sy Mlrise -

"data": [

{

"id": "card_178DMr2eZvKY1lo2CEolHjbJX",

"object": "card",
"address_city": null,
"address_country": null,
"address_linel": null,
"address_linel_check": null,
"address_1l1ne2": null,
"address_state": null,
"address_zip": null,

"address_zip_check": null,

l|rnll. IlV-i |I

tests

N

Implementation generators

No”

schemas

tests

Implementation gen testkit

N/

schemas

client libs

Clojure
prismatic/schema

test.check

Science!

... your language ...

types and contracts

generative tests

Science!

.. your services ...

client libraries

testkits

Science!

Informal
Reasoning

Formal /' Experimental
Proofs Evidence

examples

https://github.com/jessitron/contracts-as-types-examples

https://github.com/jessitron/schematron
resources

https://github.com/Prismatic/schema

http://hintjens.com/blog:85 The End of Software Versions

http://david-mcneil.com/post/1147832824 73/extending-
prismatic-schema-to-higher-order

Static typing and productivity: Stefik & Hanenberg 2014
http://dl.acm.org/citation.cfm?id=2661156

stripe

blog.jessitron.com

http://blog.jessitron.com
https://github.com/jessitron/contracts-as-types-examples

