
Experiences Building InfluxDB
in Go

Paul Dix
paul@influxdb.com

@pauldix

mailto:paul@influxdb.com

Who am I?
informs my experience working with a language like Go

co-founder, CEO, programmer

Author

Languages worked with Professionally in order
• VBScript

• Delphi

• C# and VB.NET

• Ruby & Javascript

• Java

• C (only a little)

• Ruby & Javascript

• Scala

• Go

http://VB.NET

Mix of static and dynamic, but
most time in dynamic languages

Open source time series database written in Go

What’s a time series?

Stock trades and quotes

Metrics

Analytics

Events

Sensor data

Two kinds of time series
data…

Regular time series

t0 t1 t2 t3 t4 t6 t7

Samples at regular intervals

Irregular time series

t0 t1 t2 t3 t4 t6 t7

Events whenever they come in

Why’d we pick Go?

Some project requirements
• Self contained binary install

Some project requirements
• Self contained binary install

• Performance

previous experience with it

faster development than
working with C/C++

growing community

simplicity of the language
significant advantage for picking up new programmers and contributors

InfluxDB Project Stats

• First Commit - September 26th, 2013

• 176 Contributors

• 68,000 LOC

Team background
• Java

• Scala

• Python

• Ruby

• C++

What has been great

Static typing
can’t believe I’m saying this

Community

Performance

What surprised us

GC hasn’t been a problem

Contributors with no previous
Go experience
simplicity of the language wins again

Haven’t really missed generics

except when I do…

// Sort methods
func (a Values) Len() int { return len(a) }
func (a Values) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a Values) Less(i, j int) bool {
 return a[i].Time().UnixNano() < a[j].Time().UnixNano()
}

Duplicate code for each data type

select percentile(90, value) from cpu
where time > now() - 1d
group by time(10m)

// Iterator represents an iterator over a series.
type Iterator interface {
 SeekTo(seek int64) (key int64, value interface{})
 Next() (key int64, value interface{})
 Ascending() bool

} we have to cast this later

Costs on performance

f := val.(float64)
// do some math

// FloatIterator represents an iterator over a series.
type FloatIterator interface {
SeekTo(seek int64) (key int64, value float64)
Next() (key int64, value float64)
Ascending() bool

}

Implement for every function
func MapMean(input *MapInput) interface{} {
if len(input.Items) == 0 {
return nil

}

out := &meanMapOutput{}
for _, item := range input.Items {
out.Count++
switch v := item.Value.(type) {
case float64:
out.Total += v

case int64:
out.Total += float64(v)
out.ResultType = Int64Type

}
}
return out

}

Could use interfaces, but there’s a
performance penalty there too…

What has been bad

Dependency management

Experiences migrating to 1.5

Compile times longer
on a project this size it’s noticeable

Performance more about our code

Go 1.5 issue forced us to revert
https://github.com/golang/go/issues/12233

https://github.com/golang/go/issues/12233

Unit and integration tests won’t
save you.

if you operate at scale, only full blown scale tests will tell you anything and even
then you may not find it

Q&A
paul@influxdb.com

@pauldix

