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What Is a probabillistic
algorithm??



Why bother?



‘In testing primality of very large numbers chosen at
random, the chance of stumbling upon a value that
fools the Fermat test is less than the chance that
cosmic radiation will cause the computer to make
an error in carrying out a ‘correct’ algorithm.
Considering an algorithm to be inadequate for the
first reason but not for the second illustrates the
difterence between mathematics and engineering.”

—Hal Abelson and Gerald J. Sussman, SICP



cverytning IS
poropabllistic



Propbabilistic algorithms
are not "guessing’



Provably bounded
error rates



Don't use them If
someone’s life depends
on It.






When should | use
these?



Ok, now what?



The Count-distinct
Problem



The Problem

How many unique words are in a large
Corpus of text”



The Problem

How many different users visited a
popular website in a day?



The Problem

How many unigue |Ps have connected to a
server over the last hour?



The Problem

How many unigue URLs have been requested
through an HTTP proxy?



The Problem

How many unigue URLs have been requested
through an entire network of HT TP proxies?
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def count distinct(stream):
seen = set()
for item in stream:
seen.add(item)
return len(seen)



Scale.



Count-distinct across
thousands of servers.



def combined cardinality(seen sets):
combined = set()
for seen in seen sets:
combined |[= seen
return len(combined)



I'he set grows linearly.



Precision comes at a cost.



2007 Conference on Analysis of Algorithms, AofA 07 DMTCS proc. AH, 2007, 127-146

HyperLogLog: the analysis of a near-optimal
cardinality estimation algorithm

Philippe Flajolet’ and Eric Fusy' and Olivier Gandouet? and Frédéric
Meunier’

' Algorithms Project, INRIA-Rocquencourt, F78153 Le Chesnay (France)
*LIRMM, 161 rue Ada, 34392 Montpellier (France)

This extended abstract describes and analyses a near-optimal probabilistic algorithm, HYPERLOGLOG, dedicated to
estimating the number of distinct clements (the cardinality) of very large data ensembles. Using an auxiliary memory
of m units (typically, “short bytes™), HYPERLOGLOG performs a single pass over the data and produces an estimate
of the cardinality such that the relative accuracy (the standard error) is typically about 1.04//m. This improves on
the best previously known cardinality estimator, LOGLOG, whose accuracy can be matched by consuming only 64%
of the original memory. For instance, the new algorithm makes it possible to estimate cardinalities well beyond 10”
with a typical accuracy of 2% while using a memory of only 1.5 kilobytes. The algorithm parallelizes optimally and
adapts to the sliding window model.

Introduction

The purpose of this note is to present and analyse an efficient algorithm for estimating the number of
distinct elements, known as the cardinality, of large data ensembles, which are referred to here as multisets
and are usually massive streams (read-once sequences). This problem has received a great deal of attention
over the past two decades, finding an ever growing number of applications in networking and traffic
monitoring, such as the detection of worm propagation, of network attacks (e.g., by Denial of Service),
and of link-based spam on the web [3]. For instance, a data stream over a network consists of a sequence
of packets, each packet having a header, which contains a pair (source-destination) of addresses, followed
bv a bodyv of specific data: the number of distinct header pairs (the cardinality of the multiset) in various




Loglog Counting of Large Cardinalities
(Extended Abstract)

Marianne Durand and Philippe Flajolet

Algorithms Project, INRIA-Rocquencourt, F78153 Le Chesnay (France)

Abstract. Using an auxiliary memory smaller than the size of this ab-
stract, the LOGLOG algorithm makes it possible to estimate in a single
pass and within a few percents the number of different words in the
whole of Shakespeare’s works. In general the LOGLOG algorithm makes
use of m “small bytes” of auxiliary memory in order to estimate in a
single pass the number of distinct elements (the “cardinality”) in a file,
and it does so with an accuracy that is of the order of 1/y/m. The “small
bytes” to be used in order to count cardinalities till Nj,ax comprise about
log log Nmax bits, so that cardinalities well in the range of billions can be
determined using one or two kilobytes of memory only. The basic version
of the LOGLOG algorithm is validated by a complete analysis. An opti-
mized version, super—-LOGLOG, is also engineered and tested on real-life
data. The algorithm parallelizes optimally.

1 Introduction
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We expect the maximum number of leading
zeros we have seen + 1 to approximate
logz(unique items).




Improve the accuracy of
the estimate by
partitioning the input data.



class LoglLog(object):
def init (self, k):
self.k = k
self.m = 2 ** k
self.M = np.zeros(self.m, dtype=np.int)
self.alpha = Alpha[k]

def insert(self, token):
y = hash_fn(token)
j =y > (hash_len - self.k)
remaining = y & ((1 << (hash_len - self.k)) - 1)
first set bit = (64 - self.k) -
int(math.log(remaining, 2))
self.M[j] = max(self.M[j], first set bit)

def cardinality(self):
return self.alpha * 2 ** np.mean(self.M)



Unions of
HyperLoglLogs



HyperLoglLog

Adding an item: O(1)
Retrieving cardinality: O(1)
Space: O(log log n)

Error rate: 2%



HyperLoglLog

For 100 million unigue items,
and an error rate of 2%,
the size of the HyperLoglLog is...
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Rellable Broadcast



The Problem

Reliably broadcast “purge” messages across the world
as quickly as possible.



Single source of
trutn



Single source of
fallures



Atomic broadcast



Rellable broadcast



A Reliable Multicast Framework for Light-weight Sessions
and Application Level Framing

Sally Floyd, Van Jacobson, Ching-Gung Liu, Steven McCanne, and Lixia Zhang
to appear in IEEE/ACM Transactions on Networking, December 1997

Abstract—This paper! describes SRM (Scalable Reliable Multicast), a
reliable multicast framework for light-weight sessions and application level
framing. The algorithms of this framework are efficient, robust, and scale
well to both very large networks and very large sessions. The SRM frame-
work has been prototyped in wb, a distributed whiteboard application,
which has been used on a global scale with sessions ranging from a few
to a few hundred participants. The paper describes the principles that have
guided the SRM design, including the IP multicast group delivery model,
an end-to-end, receiver-based model of reliability, and the application level
framing protocol model. As with unicast communications, the performance
of a reliable multicast delivery algorithm depends on the underlying topol-
ogy and operational environment. We investigate that dependence via anal-
ysis and simulation, and demonstrate an adaptive algorithm that uses the
results of previous loss recovery events to adapt the control parameters used
for future loss recovery. With the adaptive algorithm, our reliable multicast
delivery algorithm provides good performance over a wide range of under-

lying topologies.

1 Introduction

Several researchers have proposed generic reliable multicast pro-
tocols, much as TCP is a generic transport protocol for reliable
unicast transmission. In this paper we take a different view: un-
like the unicast case where requirements for reliable, sequenced
data delivery are fairly general, different multicast applications
have widely different requirements for reliability. For exam-
ple, some applications require that delivery obey a total order-
ing while many others do not. Some applications have many or
all the members sending data while others have only one data
source. Some applications have replicated data, for example in
an n-redundant file store, so several members are capable of
transmitting a data item while for others all data originates at a
single source. These differences all affect the design of a reliable

multicast protocol. Although one could design a protocol for
the worst-cace reauirements e ¢ onaranteeine totallv ordered

recognized. In 1990 Clark and Tennenhouse proposed a new
protocol model called Application Level Framing (ALF) which
explicitly includes an application's semantics in the design of
that application's protocol [6]. ALF was later elaborated with
a light-weight rendezvous mechanism based on the IP multicast
distribution model, and with a notion of receiver-based adap-
tation for unreliable, real-time applications such as audio and
video conferencing. The result, known as Light-Weight Ses-
sions (LWS) [19], has been very successful in the design of
wide-area, large-scale, conferencing applications. This paper
further evolves the principles of ALF and LWS to add a frame-
work for Scalable Reliable Multicast (SRM).

ALF says that the best way to meet diverse application re-
quirements is to leave as much functionality and flexibility as
possible to the application. Therefore SRM is designed to meet
only the minimal definition of reliable multicast, i.e., eventual
delivery of all the data to all the group members, without en-
forcing any particular delivery order. We believe that if the need
arises, machinery to enforce a particular delivery order can be
casily added on top of this reliable delivery service.

It has been argued [36, 34] that a single dynamically config-
urable protocol should be used to accommodate different appli-
cation requirements. The ALF argument is even stronger: not
only do different applications require different types of error re-
covery, flow control, and rate control mechanisms, but further,
these mechanisms must explicitly account for the structure of
the underlying application data itself.

SRM is also heavily based on the group delivery model that
is the centerpiece of the IP multicast protocol [8]. In IP multi-
cast, data sources simply send to the group's multicast address
(a normal IP address chosen from a reserved range of addresses)
without needing any advance knowledge of the group member-




AN EFFICIENT RELIABLE BROADCAST PROTOCOL

M. Frans Kaashoek
Andrew S. Tanenbaum

Susan Flynn Hummel
Henri E. Bal

Dept. of Mathematics and Computer Science
Vrije Universiteit
Amsterdam, The Netherlands

Email: kaashoek@cs.vu.nl

ABSTRACT

Many distributed and parallel applications can make good use of broad-
cast communication. In this paper we present a (software) protocol that simu-
lates reliable broadcast, even on an unreliable network. Using this protocol,
application programs need not worry about lost messages. Recovery of com-
munication failures is handled automatically and transparently by the proto-
col. In normal operation, our protocol is more efficient than previously pub-
lished reliable broadcast protocols. An initial implementation of the protocol
on 10 MC68020 CPUs connected by a 10 Mbit/sec Ethernet performs a reli-
able broadcast in 1.5 msec.

1. INTRODUCTION

Most current distributed operating systems are based on remote procedure call (RPC) [Birrell
and Nelson 1984]). For many distributed and parallel applications, however, this sender-to-
receiver-and-back communication style is inappropriate. What is frequently needed is broad-
casting , in which an arbitrary one of the n user processes sends a message to the other n — 1
processes. Although broadcasting can always be simulated by sending n — 1 messages and
waiting for the n — 1 acknowledgements, this algorithm is slow, inefficient, and wasteful of
network bandwidth. In this paper we discuss a new protocol that allows 100% reliable
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Gossip Protocols



Epidemic Broadcast Trees *

Jodo Leitdo José Pereira Luis Rodrigues
University of Lisbon University of Minho University of Lisbon
jleitao@lasige.di.fc.ul.pt jop@di.uminho.pt ler@di.fe.ul.pt
Abstract

There is an inherent trade-off between epidemic and deterministic tree-based broadcast primitives. Tree-based
approaches have a small message complexity in steady-state but are very fragile in the presence of faults. Gossip,
or epidemic, protocols have a higher message complexity but also offer much higher resilience.

This paper proposes an integrated broadcast scheme that combines both approaches. We use a low cost scheme
to build and maintain broadcast trees embedded on a gossip-based overlay. The protocol sends the message
payload preferably via tree branches but uses the remaining links of the gossip overlay for fast recovery and
expedite tree healing. Experimental evaluation presented in the paper shows that our new strategy has a low
overhead and that is able to support large number of faults while maintaining a high reliability.

1. Introduction

Many systems require highly scalable and reliable broadcast primitives. These primitives aim at ensuring that
all correct participants receive all broadcast messages, even in the presence of network omissions or node failures.




Sprinkler — Reliable Broadcast for
Geographically Dispersed Datacenters

Haoyan Geng and Robbert van Renesse
Cornell University, Ithaca, New York, USA

Abstract. This paper describes and evaluates Sprinkler, a reliable high-
throughput broadcast facility for geographically dispersed datacenters.
For scaling cloud services, datacenters use caching throughout their in-
frastructure. Sprinkler can be used to broadcast update events that inval-
idate cache entries. The number of recipients can scale to many thousands
in such scenarios. The Sprinkler infrastructure consists of two layers: one
layer to disseminate events among datacenters, and a second layer to dis-
seminate events among machines within a datacenter. A novel garbage
collection interface is introduced to save storage space and network band-
width. The first layer is evaluated using an implementation deployed on
Emulab. For the second layer, involving thousands of nodes, we use a
discrete event simulation. The effect of garbage collection is analyzed
using simulation. The evaluation shows that Sprinkler can disseminate
millions of events per second throughout a large cloud infrastructure,
and garbage collection is effective in workloads like cache invalidation.

Keywords: Broadcast, performance, fault tolerance, garbage collection

1 Introduction

Today’s large scale web applications such as Facebook, Amazon, eBay, Google+,
and so on, rely heavily on caching for providing low latency responses to client
queries. Enterprise data is stored in reliable but slow back-end databases. In
order to be able to keep up with load and provide low latency responses, client
query results are computed and opportunistically cached in memory on many
thousands of machines throughout the organization’s various datacenters [21].
But when a database is updated, all affected cache entries have to be invali-
dated. Until this is completed, inconsistent data can be exposed to clients. Since
the databases cannot keep track of where these cache entries are, it is necessary
to multicast an invalidation notification to all machines that may have cached
query results. The rate of such invalidations can reach hundreds of thousands per
second. If any invalidation gets lost, inconsistencies exposed to clients may be




‘Designed for Scale”



Probabilistic Guarantees



Bimodal Multicast

KENNETH P. BIRMAN

Cornell University

MARK HAYDEN

Digital Equipment Corporation/Compaq
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There are many methods for making a multicast protocol “reliable.” At one end of the
spectrum, a reliable multicast protocol might offer atomicity guarantees, such as all-or-
nothing delivery, delivery ordering, and perhaps additional properties such as virtually
synchronous addressing. At the other are protocols that use local repair to overcome transient
packet loss in the network, offering “best effort” reliability. Yet none of this prior work has
treated stability of multicast delivery as a basic reliability property, such as might be needed
in an internet radio, television, or conferencing application. This article looks at reliability
with a new goal: development of a multicast protocol which is reliable in a sense that can be
rigorously quantified and includes throughput stability guarantees. We characterize this new
protocol as a “bimodal multicast” in reference to its reliability model, which corresponds to a
family of bimodal probability distributions. Here, we introduce the protocol, provide a
theoretical analysis of its behavior, review experimental results, and discuss some candidate
applications. These confirm that bimodal multicast is reliable, scalable, and that the protocol
provides remarkably stable delivery throughput.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks): Network

This work was supported by DARPA/ONR contracts N0014-96-1-10014 and ARPA/RADC
F30602-96-1-0317, the Cornell Theory Center, and the Turkish Research Foundation.
Authors’ addresses: K. P. Birman, Department of Computer Science, Cornell University, 4126
Upson Hall, Ithaca, NY 14853; email: ken@cs.cornell.edu; M. Hayden, Systems Research
Center, Digital Equipment Corporation/Compaq, 130 Lytton Avenue, Palo Alto, CA 94301;
email: hayden@src.dec.com; O. Ozkasap and Z. Xiao, Department of Computer Science, Cornell
University, 4126 Upson Hall, Ithaca, NY 14853; email: ozkasap@cs.cornell.edu;
xiao@cs.cornell.edu; M. Budiu, Department of Computer Science, Carnegie Mellon University,
Ithaca, NY 14853; email: mihaib@cs.cmu.edu; Y. Minsky, Department of Computer Science,
Cornell University, 4126 Upson Hall, Ithaca, NY 14853.
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Bimodal Multicast

* Quickly broadcast message to all servers

* (Gossip to recover lost messages
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http://brucespang.com/bimodal/simulation
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One Problem

Computers have limited space



I'hrow away messages
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Expected percent of infected processes after n rounds
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“with high probability” is fine



Real World



ENnd-to-End Latency

33333




ENnd-to-End Latency

Density plot and 95™ percentile of purge latency by server location
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Packet Loss

Purge performance
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(Good systems are boring



What was the point again®



We can build things that
are otherwise
unrealistic



We can pbuild systems
that are more
reliable



Youre already using them.



We're niring!

o



lThanks

@tbmcmullen




What even is this”?



Probapllistic Algorithms



Randomized Algorithms



Estimation Algorithms



Probapllistic Algorithms

. An iota of theory

. Where are they useful and where are they not?
. HyperLoglLog

. Locality-sensitive Hashing

. Bimodal Multicast



"An algorithm that uses randomness to improve
ts efticiency”



| as Vegas




onte Carlo



| as Vegas

def find las vegas(haystack, needle):
length = len(haystack)
while True:
index = randrange(length)
it haystack[index] == needle:
return 1index



Monte Carlo

def find monte carlo(haystack, needle, k):
length = len(haystack)
for i in range(k):
index = randrange(length)
if haystack[index] == needle:
return index



"For many problems a randomized
algorithm is the simplest the
fastest or both.”

— Prabhakar Raghavan (author of Randomized Algorithms)



Naive Solution

For 100 million unique IPv4 addresses,
the size of the hash is...




Slightly Less Naive

Add each IP to a bloom filter and keep a
counter of the IPs that don'’t collide.



Slightly Less Naive

ips seen = BloomFilter(capacity=expected size, error rate=0.03)
counter = 0

for line in log file:
ip = extract ip(line)
if items bloom.add(ip):
counter += 1

print "Unique IPs:", counter



Slightly Less Naive

 Adding an IP: O(1)
* Retrieving cardinality: O(1)

e Space: O(n) kind of

e Error rate: 3%



Slightly Less Naive

For 100 million unique |IPv4 addresses,
and an error rate of 3%,
the size of the bloom filter is...




def insert(self, token):
# Get hash of token
y = hash_fn(token)

# Extract k most significant bits of 'y
j =y > (hash_len - self.k)

# Extract remaining bits of 'y
remaining = y & ((1 << (hash _len - self.k)) - 1)

# Find "first"” set bit of remaining
first set bit = (64 - self.k) -
int(math.log(remaining, 2))

# Update M[j] to max of first set bit"
# and existing value of M[j]
self.M[j] = max(self.M[j], first set bit)



def cardinality(self):
# The mean of "M estimates "log2(n) with
# an additive bias
return self.alpha * 2 ** np.mean(self.M)



The Problem

Find documents that are similar to one
specific document.



The Problem

Find images that are similar to one
specific image.



The Problem

Find graphs that are correlated to one
specific graph.



The Problem

Nearest neighbor search.



The Problem

"Find the n closest points in a d-dimensional space.”



The Problem

You have a bunch of things and you want to
figure out which ones are similar.
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“There has been a lot of recent work on streaming algorithms,
l.e. algorithms that produce an output by making

one pass (or a few passes) over the data while using a
limited amount of storage space and time. To cite a few

examples, ..."

\)

{ "there": 1, "has": 1, "been": 1, “a":4,
"lot": 1, "of": 2, "recent":1, ... }



Cosine similarity
Jaccard similarity
Euclidian distance

elc etc etc



Fuclidian Distance



Metric space



KA-trees



Curse of Dimensionality



Locality-sensitive hashing



Similarity Search in High Dimensions via Hashing

ARISTIDES GIONIS ©
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{gionis,indyk,rajeev}@cs.stanford.edu

Abstract

The nearest- or near-neighbor query problems
arise in a large variety of database applications,
usually in the context of similarity searching. Of
late, there has been increasing interest in build-
ing search/index structures for performing simi-
larity search over high-dimensional data, e.g., im-
age databases, document collections, time-series
databases, and genome databases. Unfortunately,
all known techniques for solving this problem fall
prey to the “curse of dimensionality.” That is,
the data structures scale poorly with data dimen-
sionality; in fact, if the number of dimensions
exceeds 10 to 20, scarching in k-d trees and re-
lated structures involves the inspection of a large
fraction of the database, thereby doing no better
than brute-force linear search. It has been sug-
gested that since the selection of features and the
choice of a distance metnc in typical applications
is rather heuristic, determining an approximate
nearest neighbor should suffice for most practi-
cal purposes. In this paper, we examine a novel
scheme for approximate similarity search based
on hashing. The basic idea is to hash the points

from the database so as to ensure that the prob-
ability of collision is much higher for objects that
are close to each other than for those that are far
apart. We provide experimental evidence that our
method gives significant improvement in running
time over other methods for searching in high-
dimensional spaces based on hierarchical tree de-
composition. Experimental results also indicate
that our scheme scales well even for a relatively
large number of dimensions (more than 50).

1 Introduction

A similarity search problem involves a collection of ob-
jects (e.g., documents, images) that are characterized
by a collection of relevant features and represented
as points in a high-dimensional attribute space; given
queries in the form of points in this space, we are re-
quired to find the nearest (most similar) object to the
query. The particularly interesting and well-studied
case is the d-dimensional Euclidean space. The prob-
lem is of major importance to a variety of applications;
some examples are: data compression [20]; databases
and data mining [21]; information retrieval [11, 16, 38];
image and video databases [15, 17, 37, 42]; machine
learning [7]; pattern recognition [9, 13]; and, statistics
and data analysis [12, 27]. Typically, the features of
the objects of interest are represented as points in B¢

and a distance metric is used to measure similarity of
objects. The basic problem then is to perform indexing
or similarity searching for query objects. The number

*Supported by NAVY N00014-96-1-1221 grant and NSF
Grant 11S-9811904.
’S)lppqrted by Stanford Graduate Fellowship and NSIF NYI



Similarity Estimation Techniques from Rounding
Algorithms

Moses S. Charikar

Dept. of Computer Science
Princeton University
35 Olden Street
Princeton, NJ 08544

ABSTRACT

A locality sensitive hashing scheme is a distribution on a
family F of hash functions operating on a collection of ob-
jects, such that for two objects z, y,

Prier(h(z) = h(y)] = sim(z,y),

where sim(z,y) € [0,1)] is some similarity function defined
on the collection of objects. Such a scheme leads to a com-
pact representation of objects so that similarity of objects
can be estimated from their compact sketches, and also
leads to efficient algorithms for approximate nearest neigh-
bor search and clustering. Min-wise independent permu-
tations provide an elegant construction of such a locality
sensitive hashing scheme for a collection of subsets with the
aetdmﬂaﬂtymeasumaim(A,B)-H%ﬂ.

We show that rounding algorithms for LPs and SDPs used
in the context of approximation algorithms can be viewed
as locality sensitive hashing schemes for several interesting
collections of objects. Based on this insight, we construct
new locality sensitive hashing schemes for:

1. A collection of vectors with the distance between u
and ¥ measured by 0(i, ¥) /m, where 0(ii, ¥) is the an-
gle between u and v. This yields a sketching scheme
for estimating the cosine similarity measure between
two vectors, as well as a simple alternative to minwise
independent permutations for estimating set similar-
ity.

2. A collection of distributions on n points in a metric
space, with distance between distributions measured
by the Earth Mover Distance (EMD), (a popular dis-
tance measure in graphics and vision). Our hash func-

moses@cs.princeton.edu

1. INTRODUCTION

The current information explosion has resulted in an in-
creasing number of applications that need to deal with large
volumes of data. While traditional algorithm analysis as-
sumes that the data fits in main memory, it is unreasonable
to make such assumptions when dealing with massive data
sets such as data from phone calls collected by phone com-
panies, multimedia data, web page repositories and so on.
This new setting has resulted in an increased interest in
algorithms that process the input data in restricted ways,
including sampling a few data points, making only a few
passes over the data, and constructing a succinct sketch of
the input which can then be efficiently processed.

There has been a lot of recent work on streaming algo-
rithms, i.e. algorithms that produce an output by mak-
ing one pass (or a few passes) over the data while using a
limited amount of storage space and time. To cite a few
examples, Alon et al (2] considered the problem of estimat-
ing frequency moments and Guha et al [25] considered the
problem of clustering points in a streaming fashion. Many
of these streaming algorithms need to represent important
aspects of the data they have seen so far in a small amount of
space; in other words they maintain a compact sketch of the
data that encapsulates the relevant properties of the data
set. Indeed, some of these techniques lead to sketching algo-
rithms — algorithms that produce a compact sketch of a data
set so that various measurements on the original data set
can be estimated by efficient computations on the compact
sketches. Building on the ideas of [2], Alon et al [1] give al-
gorithms for estimating join sizes. Gibbons and Matias (18]
give sketching algorithms producing so called synopsis data
structures for various problems including maintaining ap-




Locality-Sensitive Hashing for Finding Nearest Neighbors
- Slaney and Casey



Random Hyperplanes



{ "there": 1, "has": 1, "been": 1, “a":4,
"lot": 1, "of": 2, "recent":1, ... }
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Cosine Similarity
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Purge performance under network partition
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95" percentile latency (s)
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Purge performance under denial-of-service attack
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